大家都来学观控、用观控、发展观控------观控科学技术(或曰观控学,观控科学)进展回顾
冯向军(LEON FENG)
03/02/2006
我追随于宏义老先生致力于泛系观控技术已有时日了。我有志接于宏义老先生的班来继承泛系观控、发展泛系观控。但是谋事在人,成事在天。所以泛系观控还须大量培养接班人。从目前的发展态势来看泛系观控已逐步从一门技术发展成为一门有光明前景的前沿科学技术。它上联认知科学,下涉一般系统科学和网络编程技术,有望开辟信息测度学和广义信息论的崭新局面。来来来!大家都来学观控、用观控、发展观控。
在不长的时间内我们已在发展观控科学技术(观控(科)学,观控技术)方面取得了如
下成绩
1)取得了关于引入观控隶属域的共识;
2)开发了两种不同形式的观控隶属域新公式,并给出了仿真结果;
3)尝试用知觉模型统一观控技术和各类经典信息和广义信息测度;
4)尝试用统一的微分方程来统一观控幂律和观控对数律。
5)开发了一系列新的广义信息测度,这包括
a)单个符号的观控相对信息;
b)观控相对信息熵;
c)适用于观控相对信息熵而物理意义明确的线性变换;
d)一种基于观控隶属域的新的综合收益和综合风险测度
e) 一种对自卑自大程度的科学测度(SASII)
f) 一种对阴险程度和上当受骗程度的科学测度 EBI 和IOBT
g) 一种对妄想的科学测度-妄想度DLI (Delusion Information)
h) 一种无中生有、谎言型相对信息GKRI
i) 一种新旧对比型观控相对熵GKRE
j) 一种考核、考试型观控相对信息 GKRI
k) 一种总统竟选型观控相对信息 GKRI
......
具有反反复复的可解(理解、认识)性、可行(实践,观控)性、可证(证实,证伪)性
是科学的三大基本特征 。
观控科学技术(或曰观控学,观控科学),具有上述科学的三大特征,所以是地地道道的现代科学。
附录
单个符号的观控相对信息GKRI
冯向军
02/16/2006
GKRI = log2(F(I)/P) -(F(I) -1)log2 (e) (GKRI-1)
F(I)为各类观控隶属域。P为单个符号的客观概率。
不难证明
GKRI
观控相对比GKRR
作 者: Leon 于 2/17/2006 7:10:43 PM回复 回复 返回
观控相对比GKRR
(A)
观控相对比GKRR 是任何形式的主观信息相对于客观信息的比值。为了使得GKRR在观
控相对域内的任何等级都取正,可以对主观信息和客观信息作某些合理的线性变换。
(B) MATLAB仿真
假设箱子里有40%的红球,30%的蓝球,百分之30%的黑球。
又假设有人对箱子里的三色球的占比作了11次猜测,其猜测结果如下:
实验号 红球 蓝球 黑球
1 40%左右 30%左右 30%左右
2 39%左右 31%左右 29%左右
3 38%左右 32%左右 28%左右
4 37%左右 33%左右 27%左右
5 36%左右 34%左右 26%左右
6 35%左右 35%左右 25%左右
7 34%左右 36%左右 24%左右
8 33%左右 37%左右 23%左右
9 32%左右 38%左右 22%左右
10 31%左右 39%左右 21%左右
11 30%左右 40%左右 20%左右
那么这位实验者所得结果的观控相对比GKRR是多少呢?
下图给出了MATLAB仿真结果。
如何用GKRE(观控相对信息熵),GKRR(观控相对比),GKRI(观控相对信息)的这些典型范例来解决实际问题呢?只须“换种说法”。
例如某连续3天的降雨量为40mm,30mm,30mm。11个降雨量预报员所预报的降雨量如
下所示
预报员代号 第1天 第2天 第3天
1 40mm左右 30mm左右 30mm左右
2 39mm左右 31mm左右 29mm左右
3 38mm左右 32mm左右 28mm左右
4 37mm左右 33mm左右 27mm左右
5 36mm左右 34mm左右 26mm左右
6 35mm左右 35mm左右 25mm左右
7 34mm左右 36mm左右 24mm左右
8 33mm左右 37mm左右 23mm左右
9 32mm左右 38mm左右 25mm左右
10 31mm左右 39mm左右 26mm左右
11 31mm左右 39mm左右 26mm左右
那么我们要问这11个降雨量预报员的预报准确程度有多高呢?
这个问题就可以用现成的观控相对比(GKRR)的MATLAB仿真来给出答案。
从下图可见11个预报员所对应的11种预报实验的观控相对比(GKRR)。
显然第1位和第2位预报员预报得最准,而第11位预报员预报得最不准。
作 者: Leon 于 2/20/2006 7:55:09 PM回复 回复 返回
观控相对比GKRR的另一种用途:在限定观控失真度的前提下,求出最宽松的观控级别。
例如某连续3天的降雨量为40mm,30mm,30mm。11个降雨量预报员所预报的降雨量如
下所示
预报员代号 第1天 第2天 第3天
1 40mm左右 30mm左右 30mm左右
2 39mm左右 31mm左右 29mm左右
3 38mm左右 32mm左右 28mm左右
4 37mm左右 33mm左右 27mm左右
5 36mm左右 34mm左右 26mm左右
6 35mm左右 35mm左右 25mm左右
7 34mm左右 36mm左右 24mm左右
8 33mm左右 37mm左右 23mm左右
9 32mm左右 38mm左右 25mm左右
10 31mm左右 39mm左右 26mm左右
11 31mm左右 39mm左右 26mm左右
假如我们把11个降雨量预报员所预报的降雨量视为11个观控级别,例如视第1个预报员所预报的降雨量为1级观控,视第2个预报员所预报的降雨量为2级观控,...
视第11个预报员所预报的降雨量为11级观控.我们要问,在限定观控失真度为不大于10%的前提下,最宽松的观控级别是第几级?
显然从下图的观控相对比GKRR随观控级别的变化态势可知,最宽松的观控级别是第
6级!
一种总统竟选型观控相对信息 GKRI
冯向军(LEON FENG)
02/25/2006
总统竟选型观控相对信息 GKRI
GKRI = log2(F(I)/Fb) (1)
F(I) 为各竟争对手属于最强实力竟争对手的观控隶属域, I = 1,2,。。。n;
Fb为门槛隶属域。
Fb = [F(1) +F(2)]/2 (2)
我们恒有当上总统的最强总统候选人的信息为正信息,其余选手的信息全部为负信息 (他们都落选了)。
一种考核、考试型观控相对信息 GKRI
冯向军(LEON FENG)
02/25/2006
考核、考试型观控相对信息 GKRI
GKRI = log2(F(I)/Fb) (1)
F(I) 为被考者属于“完全合格”的观控隶属域, I = 1,2,。。。n;
Fb为及格门槛隶属域。Fb根据实际情况选定。
我们恒有合格者信息为正信息,而不及格者的信息全部为负信息。
一种新旧对比型观控相对熵GKRE
冯向军
02/25/2006
假设有 n个评价指标,它们的客观权重为 pi (i = 1, 2,...,n).
那么
新旧对比型观控相对熵GKRE可表达为
GKRE = p1log(F1(I)_new/F1(I)_old) + p2log(F2(I)_new/F2(I)_old) +...
+pnlog(Fn(I)_new/Fn(I)_old) (1)
这其中
Fi(I)_new为第i个指标的新状态属于真-美-好的隶属域;
Fi(I)_old为第i个指标的旧状态属于真-美-好的隶属域;
i = 1, 2,...,n.
一种无中生有、谎言型相对信息GKRI
冯向军(LEON FENG)
02/26/2006
无中生有、谎言型相对信息GKRI可表达为
GKRI = log2(F(I)) -(F(I)-1)*log2(e) (1)
其中F(I)为主观相对于必然性的客观事实的各类失真判断所给出的主观观控隶属域。
例如主观地说“太阳从西边出来不正确这个判断并不是完全为真”就对应于这么一
种主观观控隶属域F(I)
我们恒有
GKRI
一种对妄想的科学测度-妄想度DLI (Delusion Information)
冯向军(LEON FENG)
02/26/2006
无中生有、谎言型相对信息GKRI可表达为
GKRI = log2(F(I)) -(F(I)-1)*log2(e) (1)
其中F(I)为主观相对于必然性的客观事实的各类失真判断所给出的主观观控隶属域。
例如主观地说“太阳从西边出来不正确这个判断并不是完全为真”就对应于这么一
种主观观控隶属域F(I)
我们恒有
GKRI
那么我们就可以定义
妄想度DLI = -GKRI =(F(I)-1)*log2(e) - log2(F(I)) (2)
一种对阴险程度和上当受骗程度的科学测度 EBI (Extent of Being Insidious) 和IOBT (The Information of Being-Tricked)
冯向军(LEON FENG)
02/26/2006
无中生有、谎言型相对信息GKRI可表达为
GKRI = log2(F(I)) -(F(I)-1)*log2(e) (1)
其中F(I)为主观相对于必然性的客观事实的各类失真判断所给出的主观观控隶属域。
例如主观地说“太阳从西边出来不正确这个判断并不是完全为真”就对应于这么一
种主观观控隶属域F(I)
我们恒有
GKRI
那么我们就可以定义
妄想度DLI = -GKRI =(F(I)-1)*log2(e) - log2(F(I)) (2)
有时这种主观的失真性的妄想是一种有目的的阴谋诡计。
我们假设阴谋诡计所对应的主观观控隶属域为 FT(I)
那么就有诡计的阴险度EBI (The Extent of Being Insidious)为
阴险度EBI = -GKRI =(FT(I)-1)*log2(e) - log2(FT(I)) (3)
一种对对自卑自大程度的科学测度(SASII - Information About being Self
Abused or Self -important) 可简单表示为
SASII = log2 (Fs(I)/Fo(I)) (1)
这其中
Fo(I)是该人客观属于某种意义下的真美好的观控隶属域;
Fs(I)是该人主观认为自己属于某种意义下的真美好的程度(主观观控隶属域);
假如SASII >0 ,那么该人在给定意义下就是自大;
假如SASII
假如SASII =0 ,那么该人在给定意义下就是不卑不亢。
一种基于观控隶属度的新的相对收益测度GKRG
冯向军
02/26/2005
设有n个观控指标,在一定条件下其客观权重为pi(i=1,2,...,n)
第i指标属于该指标的真-美-好境界的观控隶属域为Fi(I),i=1, 2,...,n.
那么就可以定义风险为
RISK = p1log2 (2/(F1(I)+1))+p2log2 (2/(F2(I)+1))+...+pnlog2 (2/(Fn(I)+1))
(1)
当F1(I) = F2(I)=...=F(I) =1时,风险Risk最小
RISK = 0
当F1(I) = F2(I)=...=F(I) =0时,风险Risk最大
RISK = 1
我们可以定义相对收益测度GKRG为
GKRG = log2((2-RISK)/(RISK+1)) (2)
当RISK = 0时, GKRG = 1比特;
当RISK = 1时, GKRG = 0比特。
[原创]一种适用于观控相对熵GKRE和观控相对比GKRR的线性变换
冯向军 (LEON FENG)
02/21/2006
先考虑一个问题。一只红箱子里有40%的红球,30%蓝球,30%的黑球。
而这样的相同的箱子有10只,那么在这10只箱子中,每只箱子中的红球、蓝球、黑
球的占比是多少呢?
显然
红球的占比为 40% * 10% = 4%
蓝球的占比为 30* 10% = 3%
黑球的占比为30%*10% = 3%
一般而言我们令 每只箱子里的红球、蓝球、黑球相对于该箱子的占比各为
p1、p2、p3
而这样的相同的箱子有1/belta只, 那么在整个1/belta只箱子中,每只箱子中的
红球、蓝球、黑球的占比就变为
(p1)(belta)、(p2)(belta)、(p3)(belta)
考虑到每只箱子的组成熵
Hs = -p1log2 (p1) -p2log2(p2)-p3log2(p3) (1)
而对于这些个p1、p2、p3的主观测度为w1, w2,w3, 就有 观控相对熵GKRR
GKRE = p1log2 (w1/p1^2) + p2log2 (w2/p2^2) + p2log2 (w3/p3^2) - (w1+w2+w3-1) (2)
恒有
GKRE
但是GKRE的正负号将取决于 wi和pi的相对值(i=1, 2, 3).
现在考虑 将
p1、p2、p3 换成 (p1)(belta)、(p2)(belta)、(p3)(belta),
那么新的客观信息Hs_New 将变成
Hs_New = belta[Hs - log2(belta)] (3)
为了使代表主观信息的观控相对熵的新形式
GKRE_New
就有
GKRE_New = belta[p1log2 (w1/p1^2) + p2log2 (w2/p2^2) + p2log2 (w3/p3^2)
-2log2(belta)] - (w1+w2+w3-belta) (5)
相应地有观控相对比的新型式为
GKRR_new = (GKRE_new)/ Hs_New (6)
引入上述线性变换后,取足够小的belta值 就可以使观控相对比的正负号不随客观概率p1、p2、p3的变化而变化,而只由主观测度w1, w2, w3来决定。
开辟科学探索观控隶属域的另一战场:基于差分方程和实际数据的观控隶属域
Fd(I)
冯向军
03/03/2006
假如我们已知规范化的数据n, 如何直接得到基于这组实际数据n的观控隶属域呢?
本文提出一种基于差分方程的观控隶属域Fd(I)
假设
数据n=(1, 0.811, 0.732, 0.654, 0.31)
那么就有
绝对变化量
D = (0, -0.1890, -0.0790, -0.0780, -0.3440)
变化基准
M = (1, 1, 0.811, 0.732, 0.654)
相对变化
d = (0, -0.1890, -0.0974, -0.1066, -0.5260)
带待定系数alfa的相对变化的累和为
DELTA =alfa* (0, -0.1890, -0.2864, -0.3930, -0.9190)
考虑边界条件 DELTA(5) = -1
有alfa= -1/DELTA(5)
于是有观控隶属域为
F = 1+ DELTA = (1, 0.7943, 0.6883, 0.5724, 0)
一种将观控隶属域扩展为在[-1,+1]区间取值的观控隶属域公式
冯向军 (LEON FENG)
02/28/2006
F(I) = ln(m-I)/ln(m-1) (1)
这其中
m = (max{I} +1 +sqrt(max{I}^2 -2.*max{I} +5))/2 (2)
MATLAB仿真表明此公式行之有效。
作 者: Leon 于 1/25/2006 4:37:07 AM回复 回复 返回
[原创]一种对于宏义老先生观控基本公式进行实质性改进的尝试
冯向军
1/24/2006
基本公式
F(I) = [ Ln(n+e-I) - (n+e-I) / e ] /[Ln(n+e-1) -(n+e-1) / e] (1)
F(I)满足
F(1) = 1 (2)
F(n) = 0 (3)
dF/dI | I = n = 0 (4)
这个公式是直接从改进型的实验心理学模型推得的。
要得要不得,大家来评论!
我根据新公式画了一下 n = 10 时的情况,蛮好的!
冯向军让各位父老乡亲猜了一晚上的谜语,现在"丑媳妇"也得见"公婆"了。
我在于宏义模型上的改进模型是:
我觉得
感觉不但与刺激量T的相对变化有关,而且可能与刺激量T的绝对变化有关!
于是我在于宏义的模型上把基本的微分方程变为
deltaS = a (deltaT/T) + b(deltaT) (1-1)
根据这一基本微分方程再加边界条件
F(1) =1 (1-2)
F(n) = 0 (1-3)
(dF/dI) |I = n = 0 (1-4)
我就推导出新的表达式
F(I) = [ Ln(n+e-I) - (n+e-I) / e ] /[Ln(n+e-1) -(n+e-1) / e] (1-5)
作 者: Leon 于 1/23/2006 8:40:32 AM 在本版发表
回复 返回
冯向军的改进表达式可用于混淆概率精确而方便的计算
混淆概率(观控隶属度)F(I)
=
Ln( Maximal Order Number + 1 - I )/Ln(Maximal Order Number) (1-1)
这其中 Maximal Order Number 为最大等级序号;
Ln为自然对数;
I为观控等级序号。
所谓我这个算法应该是我这个对于宏义算法的修改。
具有幂律的观控隶属域新公式及其MATLAB仿真
冯向军(LEON FENG)
03/02/2006
当对于序的相同的相对变化,隶属域F(I)的相对变化并不是一个常量时,一般而言,
我们有
dF = (alfa) *(m-I)^(belta+1)* d(m-I)/(m-I) = (alfa) * (m-I)^belta d(m-I)
(1)
这其中,m为某种基准。d(m-I)/(m-I) 是相对于某一基准的序的相对变化,(m-I)^(belta+1)映射隶属域F(I)的相对变化即使对于同样的序的相对变化,也并不一定为一常量,而是与序的相对大小有某种关系。
由(1)式可知,当belta= -1时, 不计一常数项,F(I)的一般形式为
F(I) = (alfa) * Ln(m-I) (2)
而当belta -1时, 不计一常数项,F(I)的一般形式为
F(I) = (alfa) * (m-I)^(belta+1)/(belta+1) (3)
这样我们就从更根本的层次---微分方程上统一了观控幂律和观控对数律。
从(3)式出发,考虑边界条件
F(1) =1
F(max{I}) = 0
就有具有幂律的观控隶属域新公式
F(I) = ((n-I)/(n-1))^(belta+1) (4)
这其中
n =max(I} (5)
下图是针对不同的belta值所进行的MATLAB仿真的结果。