
絕對零度是熱力學的最低溫度,但此為僅存於理論的下限值。其熱力學溫標寫成 0K,等於攝氏溫標零下273.15度(8722;273.15℃)。 物質的溫度取決於其內原子、分子等粒子的動能。根據麥克斯韋-玻爾茲曼分佈,粒子動能越高,物質溫度就越高。理論上,若粒子動能低到量子力學的最低點時,物質即達到絕對零度,不能再低。然而,絕對零度永遠無法達到,只可無限逼近。因為任何空間必然存有能量和熱量,也不斷進行相互轉換而不消失。所以絕對零度是不存在的,除非該空間自始即無任何能量熱量。在此一空間,所有物質完全沒有粒子振動,其總體積並且為零。 有關物質接近絕對零度時的行為,可初步觀察熱德布洛伊波長(Thermal de Broglie wavelength)。定義如下: 其中 h 為普朗克常數、m 為粒子的質量、k 為波茲曼常數、T 為絕對溫度。可見熱德布洛伊波長與絕對溫度的平方根成反比,因此當溫度很低的時候,粒子物質波的波長很長,粒子與粒子之間的物質波有很大的重疊,因此量子力學的效應就會變得很明顯。著名的現象之一就是玻色-愛因斯坦凝聚,玻色-愛因斯坦凝聚在1995年首次被實驗證實,當時溫度降至只有 170×10-9 開爾文。 量子理论预示,真空中蕴藏着巨大的本底能量, 它在绝对零度条件下仍然存在, 称为真空零点能。对卡西米尔(Casimir)力(一种由于真空零点电磁涨落产生的作用力)的精确测量,证实了这一物理现象。 现代科学认为真空并不意味着一无所有,真空是由正电子和负电子旋转波包组成的系统,这种状态的动态能量可以作为工业能源、未来星际航行能源以及家庭生活等诸多领域的能源。量子真空是一个非常活跃的空间,它充满时隐时现的粒子和在零点线值上涨落的能量场。而与这种现象伴生的能量,被称为零点能,也就是说,即使在绝对零度,这种真空活性仍然保持着。早在1891年,科学家忒斯拉(Nikola Tesla)在一次演讲中就提到:几个世纪之后,也许我们可以从宇宙中的任意一点提取能量来驱动我们的机械。用今天的科学语言解释,这种能源就是真空零点能,或称空间能、自由能等。 真空零点能-研究 零点能的存在 关于零点能的设想来自量子力学的一个著名概念:海森堡测不准原理。该原理指出:不可能同时以较高的精确度得知一个粒子的位置和动量。因此,当温度降到绝对零度时粒子必定仍然在振动;否则,如果粒子完全停下来,那它的动量和位置就可以同时精确的测知,而这是违反测不准原理的。这种粒子在绝对零度时的振动(零点振动)所具有的能量就是零点能。狄拉克从量子场论对真空态进行了生动的描述,把真空比喻为起伏不定的能量之海。J. Wheeler估算出真空的能量密度可高达1095 g/cm^3。 1948年,荷兰物理学家亨德里克·卡西米尔提出了一项检测这种能量存在的方案。从理论上看,真空能量以粒子的形态出现,并不断以微小的规模形成和消失。在正常情况下。真空中充满着几乎各种波长的粒子,但卡西米尔认为,如果使两个不带电的金属薄盘紧紧靠在一起,较长的波长就会被排除出去。接着,金属盘外的其他波就会产生一种往往使它们相互聚拢的力,金属盘越靠近,两者之间的吸引力就越强。1996 年,物理学家首次对这种所谓的卡西米尔效应进行了测定。华盛顿大学Lamoreaux在他的学生Dev Sen协助下,对卡西米尔效应进行了精确的测量,该测量结果与卡西米尔对这一特殊板间距及几何构形所预测的力相差不超过5%。Lamoreaux在他的实验中,采用镀金石英表面作为他的金属板。另外一块板固定在一个灵敏扭摆的端部。如果该板向着另外一块板移动,则摆就会发生扭转。一台激光器可以以0.01微米的精度测量扭摆的扭转。向一组压电组件施加的一股电流使卡西米尔板移动;而另一电子反馈系统则抵消这一移动,使扭摆保持静止。零点能效应就表现为保持摆的位置所需的电流量的变化。Mohideen等人在加州理工学院作的实验中,在0.1到0.9μm的范围内,用原子力显微镜对卡西米尔力进行的测量结果,与理论值相差不到1%。