傅立叶变换: 抽象掉时间, 将系统抽象为由一些集中质量块和弹性元件组成的模型

模态分析方法及其应用



模态分析方法是把复杂的实际结构简化成模态模型,来进行系统的参数识别(系统识别),从而大大地简化了系统的数学运算。通过实验测得实际响应来寻求相应的模型或调整预想的模型参数,使其成为实际结构的最佳描述。
主要应用有:
用于振动测量和结构动力学分析。可测得比较精确的固有频率、模态振型、模态阻尼、模态质量和模态刚度。
可用模态实验结果去指导有限元理论模型的修正,使计算机模型更趋于完善和合理。
用来进行结构动力学修改、灵敏度分析和反问题的计算。
用来进行响应计算和载荷识别。
2、模态分析基本原理

工程实际中的振动系统都是连续弹性体,其质量与刚度具有分析的性质,只有掌握无限多个点在每瞬间时的运动情况,才能全面描述系统的振动。因此,理论上它们都属于无限多自由度的系统,需要用连续模型才能加以描述。但实际上不可能这样做,通常采用简化的方法,归结为有限个自由度的模型来进行分析,即将系统抽象为由一些集中质量块和弹性元件组成的模型。如果简化的系统模型中有n个集中质量,一般它便是一个n 自由度的系统,需要n 个独立坐标来描述它们的运动,系统的运动方程是n个二阶互相耦合(联立)的常微分方程。

模态分析是在承认实际结构可以运用所谓“模态模型”来描述其动态响应的条件下,通过实验数据的处理和分析,寻求其“模态参数”,是一种参数识别的方法。

模态分析的实质,是一种坐标转换。其目的在于把原在物理坐标系统中描述的响应向量,放到所谓“模态坐标系统”中来描述。这一坐标系统的每一个基向量恰是振动系统的一个特征向量。也就是说在这个坐标下,振动方程是一组互无耦合的方程,分别描述振动系统的各阶振动形式,每个坐标均可单独求解,得到系统的某阶结构参数。

请您先登陆,再发跟帖!