揭秘:稀土(Rare earth elements)到底能干什么?

来源: 2010-09-24 08:04:32 [博客] [旧帖] [给我悄悄话] 本文已被阅读:
问了一圈儿也没人正面回答,我只好自己做个研究。
首先是稀土英文名称,俗称Rare earth elements
学名好像是Didymium oxide
便于大家自己查资料。下面附百度百科和wapedia的中英文材料。您要是懒得看,这里是摘要:

能干什么?用不着说飞机导弹之类的远的,根本在于:
可生产荧光材料、稀土金属氢化物电池材料(想象电动车)、电光源材料(想象夜视镜)、永磁材料(想象步进、伺服马达)、储氢材料、催化材料、精密陶瓷材料(电子元件)、激光材料(不用说了)、超导材料(不用说了)、磁致伸缩材料(控制与引信?)、磁致冷材料(红外伪装于减噪?)、磁光存储材料、光导纤维材料(不用说了)等

而且关键是2/3的中国储量已经没了。

==========================================================================
稀土
百科名片
[稀土样品]
稀土样品

稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。

目录

概述
中国稀土资源分布
稀土开采对环境的破坏
稀土的分类
17种稀土元素名称的由来及用途

1. 镧(La)
2. 铈(Ce)
3. 镨(Pr)
4. 钕(Nd)
5. 钷(Pm)
6. 钐(Sm)
7. 铕(Eu)
8. 钆(Gd)
9. 铽(Tb)
10. 镝(Dy)
11. 钬(Ho)
12. 铒(Er)
13. 铥(Tm)
14. 镱(Yb)
15. 镥(Lu)
16. 钇(Y)
17. 钪(Sc)

稀土元素的性质与应用
稀土矿物的主要特点
稀土的赋存状态
世界稀土资源
稀土生产与分离
中国2/3稀土已外流
联合监管开发

概述
中国稀土资源分布
稀土开采对环境的破坏
稀土的分类
17种稀土元素名称的由来及用途

1. 镧(La)
2. 铈(Ce)
3. 镨(Pr)
4. 钕(Nd)
5. 钷(Pm)
6. 钐(Sm)
7. 铕(Eu)
8. 钆(Gd)
9. 铽(Tb)
10. 镝(Dy)
11. 钬(Ho)
12. 铒(Er)
13. 铥(Tm)
14. 镱(Yb)
15. 镥(Lu)
16. 钇(Y)
17. 钪(Sc)

稀土元素的性质与应用
稀土矿物的主要特点
稀土的赋存状态

* 世界稀土资源
* 稀土生产与分离
* 中国2/3稀土已外流
* 联合监管开发

展开

编辑本段
概述
  日本是稀土的主要使用国,目前我国出口的稀土数量达到每年5万



吨(合法出口),主要的应用大国为日本,欧洲和北美。与此同时稀土在我国的应用也在积极开展,目前占到7万吨。我国每年稀土实际的矿产的实际投入量大约为15万吨,这个数字近年来没有明显变化。尽管如此,稀土的数量仍然不能满足目前全球在汽车、电子等行业用量的要求。特别是稀土在抛光,催化,磁性材料方面的增长也是非常突出。然而稀土的应用也存在着参差不齐的问题,一些元素,例如:Sm,Gd,Ho,Er等就没有得到充分的应用而大量荒弃,非常可惜。
编辑本段
中国稀土资源分布
  中国是世界上稀土资源最丰富的国家,素有"稀土王国"之称,总保有储量TR2O3约9000万吨。全国探明储量的矿区有60多处,分布于16个省(区),以赣州为最,稀土储量产量均占全国的50%以上,湖北、贵州、江西、广东等省次之。我国稀土矿产不仅储量大,而且品种多、质量好,矿床类型独特,如内蒙古白云鄂博沉积变质-热液交代型铌-稀土矿床和南岭地区的风化壳型矿床,在世界上均居独特地位。我国稀土矿产多与其他矿产共生,南以重稀土为主,北以轻稀土为主。
编辑本段
稀土开采对环境的破坏
  例子1:邹陶村共有田地500余亩,其中20亩过去被征用开采稀土矿,受污染的农田则超过80亩。据介绍,过去邹陶村稀土矿用老式的开采方法:在山包上挖洞、稀土与粘土一齐挖出、用草酸与粘土发生化学反应提炼出初级稀土。这样一来,山包上的土几乎被挖空,造成严重的水土流失和表面植被破坏。
  



草酸严重污染水质,邹陶村附近的和山岩水库被严重破坏,而这个担负着供应兴宁军用机场官兵的饮用水和附近四五个镇农田灌溉重任的水库,如今只剩下不足一米的池塘了。当地村民称他们的饮用水“怪味水”,拿到兴宁市环保检测站检验时,发现PH值、亚硝酸盐、铁、铅等多个项目超标,根本无法饮用,现在村民都只能喝从远处山上引下的山泉。
  例子2:大规模非法开采稀土矿,经硝酸铵、硫酸等剧毒化学药水洗矿的废水不作任何处理,大量直接排入河里。从各个挖矿点看到,大量机械在几个山头全面开工,大片青山变为黄土高坡,大片树木已被砍伐,山下的洗矿池里硫酸硝酸铵等化学品(听说还有其它有害化学药品)的臭味在一公里之外也可闻到。大量有剧毒的废水直接穿过水稻田而排入小河流入西支江。废水所到之处,农作物全部死亡,小河中的鱼虾因死亡也发出一阵阵的恶臭。此外,每逢大雨来临,山上大量裸土被洪水冲下山,造成大量农田被淹没。
编辑本段
稀土的分类
  根据稀土元素间物理化学性质,稀土类元素分为轻、重两组。
  1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕。
  2)重稀土(又称钇组):钆、铽、镝、钬、铒、铥、镱、镥、钪、钇。
  铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。
  稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧 (La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥 (Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。
编辑本段
17种稀土元素名称的由来及用途
  稀土一词是历史遗留下来的名称。稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。通常把镧、铈、镨、钕、钷、钐、铕称为轻稀土或铈组稀土;把钆、铽、镝、钬、铒、铥、镱、镥钇称为重稀土或钇组稀土。也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三
[我国稀土分布]

我国稀土分布
组,即轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。
  这些稀土元素的发现,从1794年芬兰人加多林(J.Gadolin)分离出钇到1947年美国人马林斯基(J.A.Marinsky)等制得钷,历时150多年。其中大部分稀土元素是欧洲的一些矿物学家、化学家、冶金学家等发现制取的。钷是美国人马林斯基、格兰德宁(L.E.Glendenin)和科列尔(C.D.Coryell)用离子交换分离,在铀裂变产物的稀土元素中获得的。过去认为自然界中不存在钷,直到1965年,芬兰一家磷酸盐工厂在处理磷灰石时发现了痕量的钷。
镧(La)
  "镧"这个元素是1839年被命名的,当时有个叫"莫桑德"的瑞典人发现铈土中含有其它元素,他借用希腊语中"隐藏"一词把这种元素取名为"镧"。
  镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。镧也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与"超级钙"的美称。
铈(Ce)
  "铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。
  铈的广泛应用:
  (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨.
  (2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。



(3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。
  (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。
镨(Pr)
  大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为"镨钕"。"镨钕"希腊语为"双生子"之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从"镨钕"中分离出了两个元素,一个取名为" 钕",另一个则命名为"镨"。这种"双生子"被分隔开了,镨元素也有了自己施展才华的广阔天地。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。
  镨的广泛应用:
  (1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。
  (2)用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马达上。
  (3)用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用,用量不断增大。
  (4)镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。
钕(Nd)
  伴随着镨元素的诞生,钕元素也应运而生,钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。?
  钕元素凭借其在稀土领域中的独特地位,多年来成为市场关注的热点。金属钕的最大用户是钕铁硼永磁材料。钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。钕铁硼磁体磁能积高,被称作当代"永磁之王",以其优异的性能广泛用于电子、机械等行业。阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。钕还应用于有色金属材料。在镁或铝合金中添加1.5~2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。
钷(Pm)
  1947年,马林斯基(J.A.Marinsky)、格伦丹宁(L.E.Glendenin)和科里尔(C.E.Coryell)从原子能反应堆用过的铀燃料中成功地分离出61号元素,用希腊神话中的神名普罗米修斯(Prometheus)命名为钷(Promethium)。钷为核反应堆生产的人造放射性元素。
  钷的主要用途有:
  (1)可作热源。为真空探测和人造卫星提供辅助能量。
  (2)Pm147放出能量低的β射线,用于制造钷电池。作为导弹制导仪器及钟表的电源。此种电池体积小,能连续使用数年之久。此外,钷还用于便携式X-射线仪、制备荧光粉、度量厚度以及航标灯中。
钐(Sm)
  1879年,波依斯包德莱从铌钇矿得到的"镨钕"中发现了新的稀土元素,并根据这种矿石的名称命名为钐。
  钐呈浅黄色,是做钐钴系永磁体的原料,钐钴磁体是最早得到工业应用的稀



土磁体。这种永磁体有SmCo5系和Sm2Co17系两类。70年代前期发明了SmCo5系,后期发明了Sm2Co17系。现在是以后者的需求为主。钐钴磁体所用的氧化钐的纯度不需太高,从成本方面考虑,主要使用95%左右的产品。此外,氧化钐还用于陶瓷电容器和催化剂方面。另外,钐还具有核性质,可用作原子能反应堆的结构材料,屏敝材料和控制材料,使核裂变产生巨大的能量得以安全利用。
铕(Eu)
  1901年,德马凯(Eugene-Antole Demarcay)从"钐"中发现了新元素,取名为铕(Europium)。这大概是根据欧洲(Europe)一词命名的。氧化铕大部分用于荧光粉。Eu3+用于红色荧光粉的激活剂,Eu2+用于蓝色荧光粉。现在Y2O2S:Eu3+是发光效率、涂敷稳定性、回收成本等最好的荧光粉。再加上对提高发光效率和对比度等技术的改进,故正在被广泛应用。近年氧化铕还用于新型X射线医疗诊断系统的受激发射荧光粉。氧化铕还可用于制造有色镜片和光学滤光片,用于磁泡贮存器件,在原子反应堆的控制材料、屏敝材料和结构材料中也能一展身手。
钆(Gd)
  1880年,瑞士的马里格纳克(G. de Marignac)将"钐"分离成两个元素,其中一个由索里特证实是钐元素,另一个元素得到波依斯包德莱的研究确认,1886年,马里格纳克为了纪念钇元素的发现者 研究稀土的先驱荷兰化学家加多林(Gado Linium),将这个新元素命名为钆。
  钆在现代技革新中将起重要作用。
  它的主要用途有:
  (1)其水溶性顺磁络合物在医疗上可提高人体的核磁共振(NMR)成像信号。
  (2)其硫氧化物可用作特殊亮度的示波管和x射线荧光屏的基质栅网。
  (3)在钆镓石榴石中的钆对于磁泡记忆存储器是理想的单基片。
  (4)在无Camot循环限制时,可用作固态磁致冷介质。
  (5)用作控制核电站的连锁反应级别的抑制剂,以保证核反应的安全。
  (6)用作钐钴磁体的添加剂,以保证性能不随温度而变化。
  另外,氧化钆与镧一起使用,有助于玻璃化区域的变化和提高玻璃的热稳定性。氧化钆还可用于制造电容器、x射线增感屏。 在世界上目前正在努力开发钆及其合金在磁致冷方面的应用,现已取得突破性进展,室温下采用超导磁体、金属钆或其合金为致冷介质的磁冰箱已经问世。
铽(Tb)
  1843年瑞典的莫桑德(Karl G.Mosander)通过对钇土的研究,发现铽元素(Terbium)。铽的应用大多涉及高技术领域,是技术密集、知识密集型的尖端项目,又是具有显著经济效益的项目,有着诱人的发展前景。
  主要应用领域有:
  (1)荧光粉用于三基色荧光粉中的绿粉的激活剂,如铽激活的磷酸盐基质、铽激活的硅酸盐基质、铽激活的铈镁铝酸盐基质,在激发状态下均发出绿色光。
  (2)磁光贮存材料,近年来铽系磁光材料已达到大量生产的规模,用Tb-Fe非晶态薄膜研制的磁光光盘,作计算机存储元件,存储能力提高10~15倍。
  (3)磁光玻璃,含铽的法拉第旋光玻璃是制造在激光技术中广泛应用的旋转器、隔离器和环形器的关键材料。特别是铽镝铁磁致伸缩合金(TerFenol) 的开发研制,更是开辟了铽的新用途,Terfenol是70年代才发现的新型材料,该合金中有一半成份为铽和镝,有时加入钬,其余为铁,该合金由美国依阿华州阿姆斯实验室首先研制,当Terfenol置于一个磁场中时,其尺寸的变化比一般磁性材料变化大这种变
[稀土开采]

稀土开采
化可以使一些精密机械运动得以实现。铽镝铁开始主要用于声纳,目前已广 泛应用于多种领域,从燃料喷射系统、液体阀门控制、微定位到机械致动器、机构和飞机太空望远镜的调节 机翼调节器等领域。
镝(Dy)
  1886年,法国人波依斯包德莱成功地将钬分离成两个元素,一个仍称为钬,而另一个根据从钬中"难以得到"的意思取名为镝(dysprosium)。镝目前在许多高技术领域起着越来越重要的作用.
  镝的最主要用途是:
  (1)作为钕铁硼系永磁体的添加剂使用,在这种磁体中添加2~3%左右的镝,可提高其矫顽力,过去镝的需求量不大,但随着钕铁硼磁体需求的增加,它成为必要的添加元素,品位必须在95~99.9%左右,需求也在迅速增加。
  (2)镝用作荧光粉激活剂,三价镝是一种有前途的单发光中心三基色发光材料的激活离子,它主要由两个发射带组成,一为黄光发射,另一为蓝光发射,掺镝的发光材料可作为三基色荧光粉。
  (3)镝是制备大磁致伸缩合金铽镝铁(Terfenol)合金的必要的金属原料,能使一些机械运动的精密活动得以实现。
  (4)镝金属可用做磁光存贮材料,具有较高的记录速度和读数敏感度。
  (5)用于镝灯的制备,在镝灯中采用的工作物质是碘化镝,这种灯具有亮度大、颜色好、色温高、体积小、电弧稳定等优点,已用于电影、印刷等照明光源。
  (6)由于镝元素具有中子俘获截面积大的特性,在原子能工业中用来测定中子能谱或做中子吸收剂。
  (7)Dy3Al5O12还可用作磁致冷用磁性工作物质。随着科学技术的发展,镝的应用领域将会不断的拓展和延伸。
钬(Ho)
  十九世纪后半叶,由于光谱分析法的发现和元素周期表的发表,再加上稀土元素电化学分离工艺的进展,更加促进了新的稀土元素的发现。1879年,瑞典人克利夫发现了钬元素并以瑞典首都斯德哥尔摩地名命名为钬(holmium)。 ?
  钬的应用领域目前还有待于进一步开发,用量不是很大,最近,包钢稀土研究院采用高温高真空蒸馏提纯技术,研制出非稀土杂质含量很低的高纯金属钬Ho/ΣRE>99.9%。
  目前钬的主要用途有:
  (1)用作金属卤素灯添加剂,金属卤素灯是一种气体放电灯,它是在高压汞灯基础上发展起来的,其特点是在灯泡里充有各种不同的稀土卤化物。目前主要使用的是稀土碘化物,在气体放电时发出不同的谱线光色。在钬灯中采用的工作物质是碘化钬,在电弧区可以获得较高的金属原子浓度,从而大大提高了辐射效能。
  (2)钬可以用作钇铁或钇铝石榴石的添加剂;
  (3)掺钬的钇铝石榴石(Ho:YAG)可发射2μm激光,人体组织对2μm激光吸收率高,几乎比Hd:YAG高3个数量级。所以用Ho:YAG激光器进行医疗手术时,不但可以提高手术效率和精度,而且可使热损伤区域减至更小。钬晶体产生的自由光束可消除脂肪而不会产生过大的热量,从而减少对健康组织产生的热损伤,据报道美国用钬激光治疗青光眼,可以减少患者手术的痛苦。我国2μm激光晶体的水平已达到国际水平,应大力开发生产这种激光晶体。
  (4)在磁致伸缩合金Terfenol-D中,也可以加入少量的钬,从而降低合金饱和磁化所需的外场。
  (5)另外用掺钬的光纤可以制作光纤激光器、光纤放大器、光纤传感器等等光通讯器件在光纤通信迅猛的今天将发挥更重要的作用。
铒(Er)
  1843年,瑞典的莫桑德发现了铒元素(Erbium)。铒的光学性质非常突出,一直是人们关注的问题:
  (1)Er3+在1550nm处的光发射具有特殊意义,因为该波长正好位于光纤通讯的光学纤维的最低损失,铒离子(Er3+)受到波长980nm、1480nm的光激发后,从基态4I15/2跃迁至高能态4I13/2,当处于高能态的Er3+再跃迁回至基态时发射出1550nm波长的光,石英光纤可传送各种不同波长的光,但不同的光光衰率不同,1550nm频带的光在石英光纤中传输时光衰减率最低 (0.15分贝/公里),几乎为下限极限衰减率。因此,光纤通信在1550nm处作信号光时,光损失最小。这样,如果把适当浓度的铒掺入合适的基质中,可依据激光原理作用,放大器能够补偿通讯系统中的损耗,因此在需要放大波长1550nm光信号的电讯网络中,掺铒光纤放大器是必不可少的光学器件,目前掺铒的二氧化硅纤维放大器已实现商业
  化。据报道,为避免无用的吸收,光纤中铒的掺杂量几十至几百ppm。光纤通信的迅猛发展,将开辟铒的应用新领域。
  (2)另外掺铒的激光晶体及其输出的1730nm激光和1550nm激光对人的眼睛安全,大 气传输性能较好,对战场的硝烟穿透能力较强,保密性好,不易被敌人探测,照射军事目标的对比度较大,已制成军事上用的对人眼安全的便携式激光测距仪。
  (3)Er3+加入到玻璃中可制成稀土玻璃激光材料,是目前输出脉冲能量最大,输出功率最高的固体激光材料。
  (4)Er3+还可做稀土上转换激光材料的激活离子。
  (5)另外铒也可应用于眼镜片玻璃、结晶玻璃的脱色和着色等。
铥(Tm)
  铥元素是1879年瑞典的克利夫发现的,并以斯堪迪那维亚(Scandinavia)的旧名Thule命名为铥(Thulium)。 ?
  ?铥的主要用途有以下几个方面:
  (1)铥用作医用轻便X光机射线源,铥在核反应堆内辐照后产生一种能发射X射线的同位素,可用来制造便携式血液辐照仪上,这种辐射仪能使铥-169受到高中子束的作用转变为铥-170,放射出X射线照射血液并使白血细胞下降,而正是这些白细胞引起器官移植排异反应的,从而减少器官的早期排异反应。
  (2)铥元素还可以应用于临床诊断和治疗肿瘤,因为它对肿瘤组织具有较高亲合性,重稀土比轻稀土亲合性更大,尤其以铥元素的亲合力最大。
  (3)铥在X射线增感屏用荧光粉中做激活剂LaOBr:Br(蓝色),达到增强光学灵敏度,因而降低了X射线对人的照射和危害,与以前钨酸钙增感屏相比可降低X射线剂量50%,这在医学应用具有重要现实的意义。
  (4)铥还可在新型照明光源 金属卤素灯做添加剂。
  (5)Tm3+加入到玻璃中可制成稀土玻璃激光材料,这是目前输出脉冲量最大,输出功率最高的固体激光材料。Tm3+也可做稀土上转换激光材料的激活离子。
镱(Yb)
  1878年,查尔斯(Jean Charles)和马利格纳克(G. de Marignac)在"铒"中发现了新的稀土元素,这个元素由伊特必(Ytterby)命名为镱(Ytterbium)。 ?
  ?镱的主要用途有:
  (1)作热屏蔽涂层材料。镱能明显地改善电沉积锌层的耐蚀性,而且含镱镀层比不含镱镀层晶粒细小,均匀致密。
  (2)作磁致伸缩材料。这种材料具有超磁致伸缩性即在磁场中膨胀的特性。该合金主要由镱/铁氧体合金及镝/铁氧体合金构成,并加入一定比例的锰,以便产生超磁致伸缩性。
  (3)用于测定压力的镱元件,试验证明,镱元件在标定的压力范围内灵敏度高,同时为镱在压力测定应用方面开辟了一个新途径。
  (4)磨牙空洞的树脂基填料,以替换过去普遍使用银汞合金。
  (5)日本学者成功地完成了掺镱钆镓石榴石埋置线路波导激光器的制备工作,这一工作的完成对激光技术的进一步发展很有意义。另外,镱还用于荧光粉激活剂、无线电陶瓷、电子计算机记忆元件(磁泡)添加剂、和玻璃纤维助熔剂以及光学玻璃添加剂等。
镥(Lu)
  1907年,韦尔斯巴赫和尤贝恩(G.Urbain)各自进行研究,用不同的分离方法从"镱"中又发现了一个新元素,韦尔斯巴赫把这个元素取名为 Cp(Cassiopeium),尤贝恩根据巴黎的旧名lutece将其命名为Lu(Lutetium)。后来发现Cp和Lu是同一元素,便统一称为镥。 ?
  ?镥的主要用途有:
  (1)制造某些特殊合金。例如镥铝合金可用于中子活化分析。
  (2)稳定的镥核素在石油裂化、烷基化、氢化和聚合反应中起催化作用。
  (3)钇铁或钇铝石榴石的添加元素,改善某些性能。
  (4)磁泡贮存器的原料。
  (5)一种复合功能晶体掺镥四硼酸铝钇钕,属于盐溶液冷却生长晶体的技术领域,实验证明,掺镥NYAB晶体在光学均匀性和激光性能方面均优于NYAB晶体。
  (6)经国外有关部门研究发现,镥在电致变色显示和低维分子半导体中具有潜在的用途。此外,镥还用于能源电池技术以及荧光粉的激活剂等。
钇(Y)
  1788年,一位以研究化学和矿物学、收集矿石的业余爱好者瑞典军官卡尔·阿雷尼乌斯(Karl Arrhenius)在斯德哥尔摩湾外的伊特必村(Ytterby),发现了外观象沥青和煤一样的黑色矿物,按当地的地名命名为伊特必矿 (Ytterbite)。1794年芬兰化学家约翰·加多林分析了这种伊特必矿样品。发现其中除铍、硅、铁的氧化物外,还含有38%的未知元素的氧化物枣"新土"。1797年,瑞典化学家埃克贝格(Anders Gustaf Ekeberg)确认了这种"新土",命名为钇土(Yttria,钇的氧化物之意)。
  钇是一种用途广泛的金属,主要用途有:
  (1)钢铁及有色合金的添加剂。FeCr合金通常含0.5-4%钇,钇能够增强这些不锈钢的抗氧化性和延展性;MB26合金中添加适量的富钇混合稀土后,合金的综合性能得到明显的改善,可以替代部分中强铝合金用于飞机的受力构件上;在Al-Zr合金中加入少量富钇稀土,可提高合金导电率;该合金已为国内大多数电线厂采用;在铜合金中加入钇,提高了导电性和机械强度。
  (2)含钇6%和铝2%的氮化硅陶瓷材料,可用来研制发动机部件。
  (3)用功率400瓦的钕钇铝石榴石激光束来对大型构件进行钻孔、切削和焊接等机械加工。
  (4)由Y-Al石榴石单晶片构成的电子显微镜荧光屏,荧光亮度高,对散射光的吸收低,抗高温和抗机械磨损性能好。
  (5)含钇达90%的高钇结构合金,可以应用于航空和其它要求低密度和高熔点的场合。
  (6)目前倍受人们关注的掺钇SrZrO3高温质子传导材料,对燃料电池、电解池和要求氢溶解度高的气敏元件的生产具有重要的意义。此外,钇还用于耐高温喷涂材料、原子能反应堆燃料的稀释剂、永磁材料添加剂以及电子工业中作吸气剂等。
钪(Sc)
  1879年,瑞典的化学教授尼尔森(L.F.Nilson, 1840~1899)和克莱夫(P.T.Cleve, 1840~1905)差不多同时在稀有的矿物硅铍钇矿和黑稀金矿中找到了一种新元素。他们给这一元素定名为"Scandium"(钪),钪就是门捷列夫当初所预言的"类硼"元素。他们的发现再次证明了元素周期律的正确性和门捷列夫的远见卓识。
  钪比起钇和镧系元素来,由于离子半径特别小,氢氧化物的碱性也特别弱,因此,钪和稀土元素混在一起时,用氨(或极稀的碱)处理,钪将首先析出,故应用"分级沉淀"法可比较容易地把它从稀土元素中分离出来。另一种方法是利用硝酸盐的分极分解进行分离,由于硝酸钪最容易分解,从而达到分离的目的。 ?
  ?用电解的方法可制得金属钪,在炼钪时将ScCl3、KCl、LiCl共熔,以熔融的锌为阴极电解之,使钪在锌极上析出,然后将锌蒸去可得金属钪。另外,在加工矿石生产铀、钍和镧系元素时易回收钪。钨、锡矿中综合回收伴生的钪也是钪的重要来源之一。 钪在化合物中主要呈3价态,在空气中容易氧化成Sc2O3而失去金属光泽变成暗灰色。
  钪的主要用途有:
  (1)钪能与热水作用放出氢,也易溶于酸,是一种强还原剂。
  (2)钪的氧化物及氢氧化物只显碱性,但其盐灰几乎不能水解。钪的氯化物为白色结晶,易溶于水并能在空气中潮解。
  (3)在冶金工业中,钪常用于制造合金(合金的添加剂),以改善合金的强度、硬度和耐热和性能。如,在铁水中加入少量的钪,可显著改善铸铁的性能,少量的钪加入铝中,可改善其强度和耐热性。
  (4)在电子工业中,钪可用作各种半导体器件,如钪的亚硫酸盐在半导体中的应用已引起了国内外的注意,含钪的铁氧体在计算机磁芯中也颇有前途。
  (5)在化学工业上,用钪化合物作酒精脱氢及脱水剂,生产乙烯和用废盐酸生产氯时的高效催化剂。
  (6)在玻璃工业中,可以制造含钪的特种玻璃。
  (7)在电光源工业中,含钪和钠制成的钪钠灯,具有效率高和光色正的优点。
  (8)自然界中钪均以45Sc形式存在,另外,钪还有9种放射性同位素,即40~44Sc和46~49Sc。其中,46Sc作为示踪剂,已在化工、冶金及海洋学等方面使用。在医学上,国外还有人研究用46Sc来医治癌症。
编辑本段
稀土元素的性质与应用
  大多数稀土金属呈现顺磁性。钆在0℃时比铁具更强的铁磁性。铽、镝、钬、铒等在低温下也呈现铁磁性,镧、铈的低熔点和钐、铕、镱的高蒸气压表现出稀土金属的物理性质有极大差异。钐、铕、钇的热中子吸收截面比广泛用于核反应堆控制材料的镉、硼还大。稀土金属具有可塑性,以钐和镱为最好。除镱外,钇组稀土较铈组稀土具有更高的硬度。
  稀土金属已广泛应用于电子、石油化工、冶金、机械、能源、轻工、环境保护、农业等领域。应用稀土可生产荧光材料、稀土金属氢化物电池材料、电光源材料、永磁材料、储氢材料、催化材料、精密陶瓷材料、激光材料、超导材料、磁致伸缩材料、磁致冷材料、磁光存储材料、光导纤维材料等。
  我国拥有丰富的稀土矿产资源,成矿条件优越,堪称得天独厚,探明的储量居世界之首,为发展我国稀土工业提供了坚实的基础。
编辑本段
稀土矿物的主要特点
  稀土元素在地壳中平均含量为165.35×10-6(黎彤,1976)。在自然界中稀土元素主要以单矿物形式存在,目前世界上已发现的稀土矿物和含稀土元素的矿物有250多种,其中稀土含量ΣREE>5.8%的有50~65种,可视为稀土独立的矿物。重要的稀土矿物主要为氟碳酸盐和磷酸盐。稀土矿物总的特点:一是缺少硫化物和硫酸盐(只有极个别的),这说明稀土元素具有亲氧性;二是稀土的硅酸盐主要是岛状,没有层状、架状和链状构造;三是部分稀土矿物(特别是复杂的氧化物及硅酸盐)呈现非晶质状态;四是稀土矿物的分布,在岩浆岩及伟晶岩中以硅酸盐及氧化物为主,在热液矿床及风化壳矿床中以氟碳酸盐、磷酸盐为主。富钇的矿物大部分都赋存在花岗岩类岩石和与其有关的伟晶岩、气成热液矿床及热液矿床中;五是稀土元素由于其原子结构、化学和晶体化学性质相近而经常共生在同一个矿物中,即铈族稀土和钇族稀土元素常共存在一个矿物中,但这类元素并非等量共存,有些矿物以含铈族稀土为主,有些矿物则以钇族为主。
  在目前已发现的250多种稀土矿物和含稀土元素的矿物,适合现今选冶条件的工业矿物仅有10余种:
  1)含铈族稀土(镧、铈、钕)的矿物:氟碳铈矿、氟碳钙铈矿、氟碳铈钙矿、氟碳钡铈矿和独居石。
  2)富钐及钆的矿物:硅铍钇矿、铌钇矿、黑稀金矿。
  3)含钇族稀土(钇、镝、铒、铥等)的矿物:磷钇矿、氟碳钙钇矿、钇易解石、褐钇铌矿、黑稀金矿。
  稀散元素在自然界里主要以分散状态赋存在有关的金属矿物中,如闪锌矿一般都富含镉、锗、镓、铟等,个别还含有铊、硒与碲;黄铜矿、黝铜矿和硫砷铜矿经常富含铊、硒及碲,个别的还富含铟与锗;方铅矿也常富含铟、铊、硒及碲;辉钼矿和斑铜矿富含铼,个别的还富含硒;黄铁矿常富含铊、镓、硒、碲等。
  稀土是钐、钕、镧等17种元素的统称,是制造被称为“灵巧炸弹”的精密制导武器、雷达和夜视镜等各种武器装备不可缺少的元素。
编辑本段
稀土的赋存状态
  ??稀土元素在地壳中主要以矿物形式存在,其赋存状态主要有三种:



1.作为矿物的基本组成元素,稀土以离子化合物形式赋存于矿物晶格中,构成矿物的必不可少的成分。这类矿物通常称为稀土矿物,如独居石、氟碳铈矿等。
  2.作为矿物的杂质元素,以类质同象置换的形式,分散于造岩矿物和稀有金属矿物中,这类矿物可称为含有稀土元素的矿物,如磷灰石、萤石等。
  3.呈离子状态被吸附于某些矿物的表面或颗粒间。这类矿物主要是各种粘土矿物、云母类矿物。这类状态的稀土元素很容易提取。
  ??已经发现的稀土矿物约有250种,但具有工业价值的稀土矿物只有50~60种,目前具有开采价值的只有10种左右,现在用于工业提取稀土元素的矿物主要有四种-氟碳铈矿、独居石矿、磷钇矿和风化壳淋积型矿,前三种矿占西方稀土产量的95%以上。独居石和氟碳铈矿中,轻稀土含量较高。磷钇矿中,重稀土和钇含量较高,但矿源比独居石少。 ?
  ?世界稀土资源拥有国除中国外,还有俄罗斯、吉尔吉斯斯坦、美国、澳大利亚、印度、扎伊尔等;主要稀土矿物是氟碳铈矿、离子吸附型矿、独居石、磷钇矿、黑稀金矿、磷灰石、铈铌钙钛矿等。主要进行开采、选矿生产的国家是中国、美国、俄罗斯、吉尔吉斯斯坦、印度、巴西、马来西亚等。 1998年全世界稀土精矿产量13万余吨(自然吨位)。值得注意的是澳大利亚、印度、南非等拥有稀土资源的国家,在未来五年内,将克服技术障碍,生产高附加值的单一稀土产品。届时世界市场的竞争将更加激烈。
  独居石 Monazite
  独居石又名磷铈镧矿。
  化学成分及性质:(Ce,La,Y,Th)[PO4]。成分变化很大。矿物成分中稀土氧化物含量可达50~68%。类质同象混入物有Y、Th、Ca、[SiO4]和[SO4]。独居石溶于H3PO4、HClO4、H2SO4中。
  晶体结构及形态:单斜晶系,斜方柱晶类。晶体成板状,晶面常有条纹,有时为柱、锥、粒状。
  物理性质:呈黄褐色、棕色、红色,间或有绿色。半透明至透明。条痕白色或浅红黄色。具有强玻璃光泽。硬度5.0~5.5。性脆。比重4.9~5.5。电磁性中弱。在X射线下发绿光。在阴极射线下不发光。
  生成状态:产在花岗岩及花岗伟晶岩中;稀有金属碳酸岩中;云英岩与石英岩中;云霞正长岩、长霓岩与碱性正长伟晶岩中;阿尔卑斯型脉中;混合岩中;及风化壳与砂矿中。 用途:主要用来提取稀土元素。
  产地:具有经济开采价值的独居石主要资源是冲积型或海滨砂矿床。最重要的海滨砂矿床是在澳大利亚沿海、巴西以及印度等沿海。此外,斯里兰卡、马达加斯加、南非、马来西亚、中国、泰国、韩国、朝鲜等地都含有独居石的重砂矿床。 ?
  ?独居石的生产近几年呈下降趋势,主要原因是由于矿石中钍元素具有放射性,对环境有害。
  氟碳铈矿(Bastnaesite)
  化学成分性质:(Ce,La)[CO3]F。机械混入物有SiO2、Al2O3、P2O5。氟碳铈矿易溶于稀HCl、HNO3、H2SO4、H3PO4。
  晶体结构及形态:六方晶系。复三方双锥晶类。晶体呈六方柱状或板状。细粒状集合体。
  物理性质:黄色、红褐色、浅绿或褐色。玻璃光泽、油脂光泽,条痕呈白色、黄色,透明至半透明。硬度4~4.5,性脆,比重4.72~5.12,有时具放射性、具弱磁性。在薄片中透明,在透射光下无色或淡黄色,在阴极射线下不发光。
  生成状态:产于稀有金属碳酸岩中;花岗岩及花岗伟晶岩中;与花岗正长岩有关的石英脉中;石英─铁锰碳酸盐岩脉中;砂矿中。
  用途:它是提取铈族稀土元素的重要矿物原料。铈族元素可用于制作合金,提高金属的弹性、韧性和强度,是制作喷气式飞机、导弹、发动机及耐热机械的重要零件。亦可用作防辐射线的防护外壳等。此外,铈族元素还用于制作各种有色玻璃。 ?
  ? 目前,已知最大的氟碳铈矿位于中国内蒙古的白云鄂博矿,作为开采铁矿的副产品,它和独居石一道被开采出来,其稀土氧化物平均含量为5~6%。品位最高的工业氟碳铈矿矿床是美国加利福尼亚州的芒廷帕斯矿,这是世界上唯一以开采稀土为主的氟碳铈矿。
  磷钇矿(Xenotime)
  化学成分及性质:Y[PO4]。成分中Y2O361.4%,P2O538.6%。有钇族稀土元素混入,其中以镱、铒、镝、钆为主。尚有锆、铀、钍等元素代替钇,同时伴随有硅代替磷。一般来说,磷钇矿中铀的含量大于钍。磷钇矿化学性质稳定。
  晶体结构及形态:四方晶系、复四方双锥晶类、呈粒状及块状。
  物理性质:黄色、红褐色,有时呈黄绿色,亦呈棕色或淡褐色。条痕淡褐色。玻璃光泽,油脂光泽。硬度4~5,比重4.4~5.1,具有弱的多色性和放射性。
  生成状态:主要产于花岗岩、花岗伟晶岩中。亦产于碱性花岗岩以及有关的矿床中。在砂矿中亦有产出。



用途:大量富集时,用作提炼稀土元素的矿物原料。
  风化壳淋积型稀土矿(Ion absorpt deposit)
  淋积型稀土矿即离子吸附型稀土矿是我国特有的新型稀土矿物。所谓"离子吸附"系稀土元素不以化合物的形式存在,而是呈离子状态吸附于粘土矿物中。这些稀土易为强电解质交换而转入溶液,不需要破碎、选矿等工艺过程,而是直接浸取即可获得混合稀土氧化物。故这类矿的特点是:重稀土元素含量高,经济含量大,品位低,覆盖面大,多在丘陵地带,适于手工和半机械化开采,开采和浸取工艺简单。
  风化壳淋积型稀土矿,主要分布在我国江西、广东、湖南、广西、福建等地。
编辑本段
世界稀土资源
  稀土元素在地壳中丰度并不稀少,只是分散而已。因此,虽然稀土的绝对量很大,但就目前为止能真正成为可开采的稀土矿并不多,而且在世界上分布极不均匀,主要集中在中国、美国、印度、前苏联、南非、澳大利亚、加拿大、埃及等几个国家,其中中国的占有率最高。
  (1)中国 中国占世界稀土资源的41.36%,是一个名符其实的稀土资源大国。稀土资源极为丰富,分布也极其合理,这为中国稀土工业的发展奠定了坚实的基础。
  主要稀土矿有白云鄂博稀土矿、山东微山稀土矿、冕宁稀土矿、江西风化壳淋积型稀土矿、湖南褐钇铌矿和漫长海岸线上的海滨砂矿等等。
  白云鄂博稀土矿与铁共生,主要稀土矿物有氟碳铈矿和独居石,其比例为3∶1,都达到了稀土回收品位,故称混合矿,稀土总储量REO为3500万吨,约占世界储量的38%,堪称为世界第一大稀土矿。
  微山稀土矿和冕宁稀土矿是以氟碳铈矿为主,伴生有重晶石等,是组成相对简单的一类易选的稀土矿。
  江西风化壳淋积型稀土矿是一种新型稀土矿种,它的选冶相对较简单,且含中重稀土较高,是一类很有市场竞争力的稀土矿。
  中国的海滨砂也极为丰富,在整个南海的海岸线及海南岛、台湾岛的海岸线可称为海滨砂存积的黄金海岸,有近代沉积砂矿和古砂矿,其中独居石和磷钇矿是处理海滨砂回收钛铁矿和锆英石时作为副产品加以回收。
  总之中国的稀土资源储量大,矿种和稀土元素齐全,稀土品位高,矿点分布合理等。
  (2)美国 美国它的稀土资源约占12.50%,其稀土消费和氟碳铈矿产量几年来一直居世界第一,但近几年稀土产量已退居第二位,让位于中国(由于美国政府十分重视稀土的保护,而中国稀土由于管理不善被严重浪费)。 美国稀土资源主要有氟碳铈矿、独居石及在选别其它矿物时,作为副产品可回收黑稀金矿、硅铍钇矿和磷钇矿。
  位于加利福尼亚的圣贝迪诺县的芒廷帕斯矿,是世界上最大的单一氟碳铈矿,该矿山1949年勘探放射性矿物时发现,稀土品位为5~10%REO,储量达500万吨之多,是一大型稀土矿。
  美国很早就开采独居石,现在开采的砂矿量是佛罗里达州的格林科夫斯普林斯矿。矿床长约19km,宽1.2km,厚为6m,独居石较为丰富。此外,北卡罗来纳州、南卡罗来纳州、佐治亚州、爱达荷州和蒙大拿州也有砂矿分布,储量也相当可观。
  (3)印度 印度主要矿床是砂矿。印度的独居石生产从1911年开始,最大矿床分布在喀拉拉邦、马德拉斯邦和奥里萨拉邦。有名矿区是位于印度南部西海岸的恰瓦拉和马纳范拉库里奇称为特拉范科的大矿床,它在1911~1945年间的供矿量占世界的一半,现在仍然是重要的产地。1958年在铀、钍资源勘探中,在比哈尔邦内陆的兰契高原上发现了一个新的独居石和钛铁矿矿床,规模巨大。
  印度独居石钍含量高达8%ThO2。在马纳范拉库里奇采的重砂独居石占5~6%。钛铁矿占65%,金红石3%,锆英石5~6%,石榴石7~8%。
  (4)前苏联 前苏联的稀土储量很大,主要是伴生矿床位于科拉半岛,存在于碱性岩中的含稀土的磷灰石。 前苏联的主要稀土来源就是从磷灰石矿石中回收稀土,此外,在磷灰石矿石中,还可回收的稀土矿物有铈铌钙钛矿,含稀土为29~34%。另外,在赫列比特和森内尔还有氟碳铈矿。
  (5)澳大利亚 澳大利亚是独居石的生产大国,独居石是作为生产锆英石和金红石及钛铁矿的副产品加以回收。澳大利亚的砂矿主要集中在西部地区。澳大利亚也产磷钇矿。 澳大利亚可开发利用的稀土资源,还有位于昆士兰州中部艾萨山的采铀的尾矿,南澳大利亚州罗克斯伯唐斯铜、铀金矿床。
  (6)加拿大 加拿大主要从铀矿中副产稀土。位于安大略省布来恩德里弗-埃利特湖地区的铀矿,主要由沥青铀矿、钛铀矿和独居石、磷钇矿组成,在湿法提铀时,可把稀土也提出来。 此外,在魁北克省的奥卡地区拥有的烧绿石矿,也是稀土的一个很大潜在资源。还有纽芬兰岛和拉布拉多省境内的斯特伦奇湖矿,也含有钇和重稀土正准备开发。
  (7)南非 南非是非洲地区最重要的独居石生产国。位于开普省的斯廷坎普斯克拉尔的磷灰石矿,伴生有独居石,是世界上唯一单一脉状型独居石稀土矿。此外,在东南海岸的查兹贝的海滨砂中也有稀土,在布法罗萤石矿中也伴生独居石和氟碳铈矿,正计划和研究回收。
  (8)马来西亚 主要从锡矿的尾矿中回收独居石、磷钇矿和铌钇矿等稀土矿物,曾一度是世界重稀土和钇的主要来源。
  (9)埃及 埃及从钛铁矿中回收独居石。矿床位于尼罗河三角洲地区,属于河滨沙矿,矿源由上游风化的冲积砂沉积而成,独居石储量约20万吨。
  (10)巴西 巴西是世界稀土生产的最古老国家,1884年开始向德国输出独居石,曾一度名扬世界。巴西的独居石资源主要集中于东部沿海,从里约热内卢到北部福塔莱萨,长达约643km地区,矿床规模大。
编辑本段
稀土生产与分离
  稀土市场是一个多元化的市场,它不只是一个产品,而是15个稀土元素和钇、钪及其各种化合物从纯度46%的氯化物到99.9999%的单一稀土氧化物及稀土金属,均具有多种多样的用途。加上相关的化合物和混合物,产品不计其数。首先从最初的矿石开采起,我们逐一介绍稀土的分离方法和冶炼过程。
  稀土选矿
  选矿是利用组成矿石的各种矿物之间的物理化学性质的差异,采用不同的选矿方法,借助不同的选矿工艺,不同的选矿设备,把矿石中的有用矿物富集起来,除去有害杂质,并使之与脉石矿物分离的机械加工过程。
  当前我国和世界上其它国家开采出来的稀土矿石中,稀土氧化物含量只有百分之几,甚至有的更低,为了满足冶炼的生产要求,在冶炼前经选矿,将稀土矿物与脉石矿物和其它有用矿物分开,以提高稀土氧化物的含量,得到能满足稀土冶金要求的稀土精矿。 稀土矿的选矿一般采用浮选法,并常辅以重选、磁选组成多种组合的选矿工艺流程。
  内蒙古白云鄂博矿山的稀土矿床,是铁白云石的碳酸岩型矿床,在主要成分铁矿中伴生稀土矿物(除氟碳铈矿、独居石外,还有数种含铌、稀土矿物)。 采出的矿石中含铁30%左右,稀土氧化物约5%。在矿山先将大矿石破碎后,用火车运至包头钢铁集团公司的选矿厂。选矿厂的任务是将Fe2O3从33%提高到55%以上,先在锥形球磨机上磨矿分级,再用圆筒磁选机选得62~65%Fe2O3的一次铁精矿。其尾矿继续进行浮选与磁选,得到含45%Fe2O3以上的二次铁精矿。稀土富集在浮选泡沫中,品位达到10~15%。该富集物可用摇床选出REO含量为30%的粗精矿,经选矿设备再处理后,可得到REO60%以上的稀土精矿。
  稀土冶炼方法
  稀土冶炼方法有两种,即湿法冶金和火法冶金。
  湿法冶金属化工冶金方式,全流程大多处于溶液、溶剂之中,如稀土精矿的分解、稀土氧化物、稀土化合物、单一稀土金属的分离和提取过程就是采用沉淀、结晶、氧化还原、溶剂萃取、离子交换等化学分离工艺过程。现应用较普遍的是有机溶剂萃取法,它是工业分离高纯单一稀土元素的通用工艺。湿法冶金流程复杂,产品纯度高,该法生产成品应用面广阔。
  火法冶金工艺过程简单,生产率较高。稀土火法冶炼主要包括硅热还原法制取稀土合金,熔盐电解法制取稀土金属或合金,金属热还原法制取稀土合金等。火法冶金的共同特点是在高温条件下生产。
  稀土精矿的分解
  稀土精矿中的稀土,一般呈难溶于水的碳酸盐、氟化物、磷酸盐、氧化物或硅酸盐等形态。必须通过各种化学变化将稀土转化为溶于水或无机酸的化合物,经过溶解、分离、净化、浓缩或灼烧等工序,制成各种混合稀土化合物如混合稀土氯化物,作为产品或分离单一稀土的原料,这样的过程称为稀土精矿分解也称为前处理。
  分解稀土精矿有很多方法,总的来说可分为三类,即酸法、碱法和氯化分解。酸法分解又分为盐酸分解、硫酸分解和氢氟酸分解法等。碱法分解又分为氢氧化钠分解或氢氧化钠熔融或苏打焙烧法等。一般根据精矿的类型、品位特点、产品方案、便于非稀土元素的回收与综合利用、利于劳动卫生与环境保护、经济合理等原则选择适宜的工艺流程。
  目前,虽然已发现有近200种稀散元素矿物,但由于稀少而未富集成具有工业开采的独立矿床,迄今只发现有很少见的独立锗矿、硒矿、碲矿,但矿床规模都不大。
  碳酸稀土和氯化稀土的生产
  这是稀土工业中最主要的两种初级产品,一般地说,目前有两个主要工艺生产这两种产品。
  一个工艺是浓硫酸焙烧工艺,即把稀土精矿与硫酸混合在回转窑中焙烧。经过焙烧的矿用水浸出,则可溶性的稀土硫酸盐就进入水溶液,称之为浸出液。然后往浸出液中加入碳酸氢铵,则稀土呈碳酸盐沉淀下来,过滤后即得碳酸稀土。
  另一种工艺叫烧碱法工艺,简称碱法工艺。一般是将60%的稀土精矿与浓碱液搅匀,在高温下熔融反应,稀土精矿即被分解,稀土变为氢氧化稀土,把碱饼经水洗除去钠盐和多余的碱,然后把水洗过的氢氧化稀土再用盐酸溶解,稀土被溶解为氯化稀土溶液,调酸度除去杂质,过滤后的氯化稀土溶液经浓缩结晶即制得固体的氯化稀土。
  稀土元素的分离
  目前,除Pm以外的16个稀土元素都可提纯到6N(99.9999%)的纯度。由稀土精矿分解后所得到的混合稀土化合物中,分离提取出单一纯稀土元素,在化学工艺上是比较复杂和困难的。其主要原因有二个,一是镧系元素之间的物理性质和化学性质十分相似,多数稀土离子半径居于相邻两元素之间,非常相近,在水溶液中都是稳定的三价态。稀土离子与水的亲和力大,因受水合物的保护,其化学性质非常相似,分离提纯极为困难。二是稀土精矿分解后所得到的混合稀土化合物中伴生的杂质元素较多(如铀、钍、铌、钽、钛、锆、铁、钙、硅、氟、磷等)。因此,在分离稀土元素的工艺流程中,不但要考虑这十几个化学性质极其相近的稀土元素之间的分离,而且还必须考虑稀土元素同伴生的杂质元素之间的分离。
  现在稀土生产中采用的分离方法:
  (1)分步法 从1794年发现的钇(Y)到1905年发现的镥(Lu)为止,所有天然存在的稀土元素间的单一分离,还有居里夫妇发现的镭,都是用这种方法分离的。分步法是利用化合物在溶剂中溶解的难易程度(溶解度)上的差别来进行分离和提纯的。方法的操作程序是:将含有两种稀土元素的化合物先以适宜的溶剂溶解后,加热浓缩,溶液中一部分元素化合物析出来(结晶或沉淀)。析出物中,溶解度较小的稀土元素得到富集,溶解度较大点的稀土元素在溶液中也得到富集。因为稀土元素之间的溶解度差别很小,必须重复操作多次才能将这两种稀土元素分离开来,因而这是一件非常困难的工作。全部稀土元素的单一分离耗费了100多年,一次分离重复操作竟达2万次,对于化学工作者而言,其艰辛的程度,可想而知。因此用这样的方法不能大量生产单一稀土。
  (2)离子交换法 由于分步法不能大量生产单一稀土,因而稀土元素的研究工作也受到了阻碍,第二次世界大战后,美国原子弹研制计划即所谓曼哈顿计划推动了稀土分离技术的发展,因稀土元素和铀、钍等放射性元素性质相似,为尽快推进原子能的研究,就将稀土作为其代用品加以利用。而且,为了分析原子核裂变产物中含有的稀土元素,并除去铀、钍中的稀土元素,研究成功了离子交换色层分析法(离子交换法),进而用于稀土元素的分离。
  离子交换色层法的原理是:首先将阳离子交换树脂填充于柱子内,再将待分离的混合稀土吸附在柱子入口处的那一端,然后让淋洗液从上到下流经柱子。形成了络合物的稀土就脱离离子交换树脂而随淋洗液一起向下流动。流动的过程中稀土络合物分解,再吸附于树脂上。就这样,稀土离子一边吸附、脱离树脂,一边随着淋洗液向柱子的出口端流动。由于稀土离子与络合剂形成的络合物的稳定性不同,因此各种稀土离子向下移动的速度不一样,亲和力大的稀土向下流动快,结果先到达出口端。
  离子交换法的优点是一次操作可以将多个元素加以分离。而且还能得到高纯度的产品。这种方法的缺点是不能连续处理,一次操作周期花费时间长,还有树脂的再生、交换等所耗成本高,因此,这种曾经是分离大量稀土的主要方法已从主流分离方法上退下来,而被溶剂萃取法取代。但由于离子交换色层法具有获得高纯度单一稀土产品的突出特点,目前,为制取超高纯单品以及一些重稀土元素的分离,还需用离子交换色层法分离制取一稀土产。
  (3)溶剂萃取法 利用有机溶剂从与其不相混溶的水溶液中把被萃取物提取分离出来的方法称之为有机溶剂液-液液萃取法,简称溶剂萃取法,它是一种把物质从一个液相转移到另一个液相的传质过程。
  溶剂萃取法在石油化工、有机化学、药物化学和分析化学方面应用较早。但近四十年来,由于原子能科学技术的发展,超纯物质及稀有元素生产的需要,溶剂萃取法在核燃料工业、稀有冶金等工业方面,得到了很大的发展。我国在萃取理论的研究、新型萃取剂的合成与应用和稀土元素分离的萃取工艺流程等方面,均达到了很高的水平。
  溶剂萃取法其萃取过程与分级沉淀、分级结晶、离子交换等分离方法相比,具有分离效果好、生产能力大、便于快速连续生产、易于实现自动控制等一系列优点,因而逐渐变成分离大量稀土的主要方法。
  溶剂萃取法的分离设备有混合澄清槽、离心萃取器等,提纯稀土所用的萃取剂有:以酸性磷酸酯为代表的阳离子萃取剂如P204稀土萃取剂、P507稀土萃取剂,以胺为代表的阴离子交换液N1923和以TBP、P350等中性磷酸酯为代表的溶剂萃取剂三种。这些萃取剂的粘度与比重都很高,与水不易分离。通常用煤油等溶剂将其稀释再用。
  萃取工艺过程一般可分为三个主要阶段:萃取、洗涤、反萃取。
  稀土金属的生产
  稀土金属一般分为混合稀土金属和单一稀土金属。混合稀土金属的组成与矿石中原有的稀土成份接近,单一金属是各稀土分离精制的金属。以稀土氧化物(除钐、铕、镱及铥的氧化物外)为原料用一般冶金方法很难还原成单一金属,因其生成热很大、稳定性高。因此目前生产稀土金属常用的原料是它们的氯化物和氟化物。
  (1)熔盐电解法 工业上大批量生产混合稀土金属一般使用熔盐电解法。这一方法是把稀土氯化物等稀土化合物加热熔融,然后进行电解,在阴极上析出稀土金属。电解法有氯化物电解和氧化物电解两种方法。单一稀土金属的制备方法因元素不同而异。钐、铕、镱、铥因蒸气压高,不适于电解法制备,而使用还原蒸馏法。其它元素可用电解法或金属热还原法制备。
  氯化物电解是生产金属最普通的方法,特别是混合稀土金属工艺简单,成本便宜,投资小,但最大缺点是氯气放出,污染环境。
  氧化物电解没有有害气体放出,但成本稍高些,一般生产价格较高的单一稀土如钕、镨等都用氧化物电解。
  (2)真空热还原法 电解法只能制备一般工业级的稀土金属,如要制备杂质较低,纯度高的金属,一般用真空热还原的方法来制取。一般是把稀土氧化物先制成氟化稀土,在真空感应炉内用金属钙进行还原,制得粗金属,然后再经过重熔和蒸馏获得较纯的金属,这一方法可以生产所有的单一稀土金属,但钐、铕、镱、铥不能用这种方法。 钐、铕、镱、铥与钙的氧化还原电位仅使氟化稀土产生部分还原。一般制备这些金属,是利用这些金属的高蒸汽压和镧金属的低蒸气压的原理,将这四种稀土的氧化物与镧金属的碎屑混合压块,在真空炉中进行还原,镧比较活泼,钐、铕、镱、铥被镧还原成金属后收集在冷凝上,与渣很容易分开。
编辑本段
中国2/3稀土已外流
  中国是在敞开了门不计成本地向世界供应稀土。著名的有良心的意大利稀土问题研究专家德古拉伯爵在其文章中称:中国稀土在世界的比例,不久前说的是85% 以上,但是目前中国的实际稀土量已经不足世界的30%,在近期世界没有发现什么重大稀土资源矿和世界其它各国基本是进口中国,而不自行开采的情况下,也就是全世界储量这个分母变成了原来的三分之一,世界总储量减少近三分之二,世界其他国家没有开采,也就是中国的稀土储量已经有三分之二被开采了,而且外流了,据报道中国的开采能力是20万吨,超过世界总需求的一倍。
  由此我们可以看出,我们三分之二的稀土资源都流失了,难道我们不应当警醒吗?这样的外流是不能再继续下去了。我们稀土储量的三分之二已经流失,再发展下去,一旦我们的资源紧缺了,我们的对手就可以天价的价格勒紧我们经济发展的喉咙了。
  现在我们应当是意识到了问题,但是我们的技术手段的粗糙,政策愚蠢,应当收取高额的资源税、环保税,国内外一样,西方就没有什么话可以说。国内使用的企业,进行高科技的补贴。没有遵守国际博弈的游戏规则,导致授人以柄,才是问题的关键,被欧美进行 WTO诉讼,国际处境非常被动,但是我们要反思,要利用规则进行博弈,我们控制国内市场炒高资源价格并且建立国家的战略储备,是我们国家的国内的行为,是我们的内政,这样的经济决策,不给西方在国际社会兴风作浪的依据,才是利用规则维护国家根本利益的关键。
  稀土储备
  内蒙古自治区副主席赵双连在2009年9月3日举行的国新办新闻发布会上透露,内蒙古正在和国家有关部门协商请示建立稀土储备制度,从而使稀土价格能够更加稳定。他同时表示,以包钢稀土集团为龙头对中国西部的稀土产业的整合基本完成。
  包钢稀土已经基本形成了一条贯穿上下游的完整产业链。以包钢稀土为中心的北方大型稀土产业集团公司的已经初具雏形。目前,包钢稀土对内蒙稀土资源控制力很强,已占据垄断地位。
编辑本段
联合监管开发
  2010年8月10日上午,南方五省(区)15市稀土开发监管区域联合行动启动仪式在广东省河源市举行。广东、广西、福建、江西、湖南五省(区)15市共同签署《南方五省(区)15市稀土开发监管区域联合行动方案》,共同规范我国稀土开发经营秩序,促进我国稀土产业协调发展。
  因此,福建省龙岩市、三明市,江西省赣州市,湖南省永州市、郴州市,广东省河源市、清远市、梅州市、韶关市、揭阳市,广西壮族自治区崇左市、贺州市、梧州市、贵港市、玉林市15市政府经磋商,决定共同对区域内稀土矿产开发采取联合监管行动。
  国土资源部副部长汪民在书面发言中强调,我们要站在国家利益和民族利益的高度,从大局出发,进一步提升对稀土资源的重要性和战略地位的认识,充分认识到开展稀土开发监管区域联动的必要性和紧迫性,增强打胜我国稀土保卫战的决心与信心。
  南方五省(区)15市稀土开发监管区域联合行动联席会议第一任主席市、广东省河源市委书记陈建华说,南方五省(区)15市稀土开发监管区域联合行动,事关国家战略安全,充分表明了我国对稀土等战略性矿产资源管理的重视和进一步整顿规范矿产资源开发秩序的决心,对地方资源产业发展具有重大的推动作用。 [1]

参考资料

* 1

中国经济网:对开发实行联合监管,南方五省打响稀土保卫战

http://www.ce.cn/macro/more/201008/11/t20100811_21709472.shtml

扩展阅读:

* 1

http://liondance-dragondance.org/c4.asp?d=19141

开放分类:
化学,化工,矿物,金属 土壤

我来完善 “稀土”相关词条:
铜金萤石磷矿铁矿石英石铀高岭土煤重晶石锑钨锰硅石石墨紫砂土油砂电解铝稀金
铜 金 萤石 磷矿 铁矿 石英石 铀 高岭土 煤 重晶石 锑 钨 锰 硅石 石墨 紫砂土 油砂 电解铝 稀金 紫萤石 蓝闪石 铱

百度百科中的词条内容仅供参考,如果您需要解决具体问题(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
2587本词条对我有帮助
添加到搜藏
分享到:

合作编辑者
yudwyudw ,爱婷无非 ,唐山李响007 ,默默的木棉 ,木七懒 ,xiaoxiang128 ,hattie119
更多
如果您认为本词条还需进一步完善,百科欢迎您也来参与编辑词条在开始编辑前,您还可以先学习如何编辑词条

如想投诉,请到百度百科投诉中心;如想提出意见、建议,请到百度百科吧。
[百科蝌蚪团] 百科分类管理员

您的词条动态

等待您来编辑

编辑热词可获得额外经验值
进入我的百科

您目前的等级是级
您目前的经验值是点
您还需点经验值即可升为级
词条统计

浏览次数:约 537060 次
编辑次数:80次 历史版本
最近更新:2010-09-14
创建者:sxzpb
最新动态

百科名片主题任务:

百科消息:
百度百科——中秋月饼
品味生活--八方美食大盘点
百度百科权威合作
沪上风情--新上海浪漫之旅
古都新貌--老北京新感受文化专题
警惕!来自异种的恐怖

推广链接
湖南稀土研究院提供稀土粉末
本院四十年来取得科研成果500多项专业提供稀土粉末,冶金和材料..
www.hnxitu.com

十年专业研发生产稀土氧化..
鱼台清达精细化工厂专业研发销售稀土氧化物系列产品 销售热线:0..
www.qingdachem.com

徐州飞翔铝业生产铝稀土13..
飞翔铝业专业开发,生产和经营铝中间合金,金属添加剂,铝稀土等产..
www.xzfxly.com

秦皇岛普达提供稀土包装机
我公司专业研制生产稀土包装机,公司以科技为本质量为先,技术实..
www.puda.com.cn


概述
中国稀土资源分布
稀土开采对环境的破坏
稀土的分类
17种稀土元素名称的由来及用途
镧(La)
铈(Ce)
镨(Pr)
钕(Nd)
钷(Pm)
钐(Sm)
铕(Eu)
钆(Gd)
铽(Tb)
镝(Dy)
钬(Ho)
铒(Er)
铥(Tm)
镱(Yb)
镥(Lu)
钇(Y)
钪(Sc)
稀土元素的性质与应用
稀土矿物的主要特点
稀土的赋存状态
世界稀土资源
稀土生产与分离
中国2/3稀土已外流
联合监管开发
© 2010 Baidu 权利声明
http://baike.baidu.com/view/89624.htm


Wapedia v
Wiki: Rare earth element (1/2)

As defined by IUPAC, rare earth elements or rare earth metals are a collection of seventeen chemical elements in the periodic table, namely scandium, yttrium, and the fifteen lanthanides. [1] Scandium and yttrium are considered rare earths since they tend to occur in the same ore deposits as the lanthanides and exhibit similar chemical properties.

Rare earth ore, shown with a United States penny for size comparison

The term "rare earth" arises from the rare earth minerals from which they were first isolated, which were uncommon oxide-type minerals (earths) found in Gadolinite extracted from one mine in the village of Ytterby, Sweden. However, with the exception of the highly-unstable promethium, rare earth elements are found in relatively high concentrations in the earth's crust, with cerium being the 25th most abundant element in the Earth's crust at 68 parts per million.

Contents:
1. List
2. Discovery and early history
3. Abbreviations
4. Technological applications
5. Global rare earth production
6. Geologic distribution
7. See also
8. References
9. External links
1. List

A table listing the seventeen rare earth elements, their atomic number and symbol, the etymology of their names, and their main usages is provided here. Some of the rare earths are named for the scientists who discovered or elucidated their elemental properties, and for their geographical discovery.
Z Symbol Name Etymology Selected Usages
21 Sc Scandium from Latin Scandia (Scandinavia), where the first rare earth ore was discovered.
39 Y Yttrium for the village of Ytterby, Sweden, where the first rare earth ore was discovered.
57 La Lanthanum from the Greek "lanthanon," meaning I am hidden. High refractive index glass, flint, hydrogen storage, battery-electrode, camera lens
58 Ce Cerium for the dwarf planet Ceres. chemical oxidizing agent, polishing powder, yellow colors in glass and ceramics, catalyst for Self-cleaning oven etc.
59 Pr Praseodymium from the Greek "praso," meaning leek-green, and "didymos," meaning twin. Rare-earth magnets, laser, green colors in glass and ceramics, flint
60 Nd Neodymium from the Greek "neo," meaning new-one, and "didymos," meaning twin. Rare-earth magnets, laser, violet colors in glass and ceramics, ceramic capacitor
61 Pm Promethium for the Titan Prometheus, who brought fire to mortals. Nuclear battery
62 Sm Samarium for Vasili Samarsky-Bykhovets, who discovered the rare earth ore samarskite. Rare-earth magnets, Laser, neutron capture, maser
63 Eu Europium for the continent of Europe. Red and blue phosphors, laser, mercury-vapor lamp
64 Gd Gadolinium for Johan Gadolin (1760-1852), to honor his investigation of rare earths. Rare-earth magnets, high refractive index glass or garnets, laser, x-ray tube, computer memory, neutron capture
65 Tb Terbium for the village of Ytterby, Sweden. Green phosphors, laser, fluorescent lamp
66 Dy Dysprosium from the Greek "dysprositos," meaning hard to get. Rare-earth magnets, laser,
67 Ho Holmium for Stockholm (in Latin, "Holmia"), native city of one of its discoverers. Laser
68 Er Erbium for the village of Ytterby, Sweden. Laser, vanadium steel
69 Tm Thulium for the mythological land of Thule. Portable X-ray machine
70 Yb Ytterbium for the village of Ytterby, Sweden. Infrared Laser, chemical reducing agent, High-temperature superconductors (YBCO)
71 Lu Lutetium for Lutetia, the city which later became Paris.
2. Discovery and early history

Rare earth elements became known to the world with the discovery of the black mineral ytterbite (also known as gadolinite) by Lieutenant Carl Axel Arrhenius in the year 1787, in a quarry in the village of Ytterby, Sweden. [2]

The ytterbite, renamed to gadolinite in 1800, of Lt. Arrhenius reached Johann Gadolin, a University of Turku professor, and his analysis yielded an unknown oxide (earth) which he called Ytteria. Anders Gustav Ekeberg isolated beryllium from the gadolinite but failed to recognize other elements which the ore contained. After this discovery in 1794 a mineral from Bastnäs near Riddarhyttan, Sweden, which was believed to be an iron-tungsten mineral, was re-examined by Jöns Jacob Berzelius and Wilhelm Hisinger. In 1803 they obtained a white oxide and called it ceria. Martin Heinrich Klaproth independently discovered the same oxide and called it ochroia.

Thus by 1803 there were two known rare earth elements, yttrium and cerium, although it took another 30 years for researchers to determine that other elements were contained in the two ores ceria and ytteria (the similarity of the rare earth metals' chemical properties made their separation difficult).

In 1839 Carl Gustav Mosander, an assistant of Berzelius, separated ceria by heating the nitrate and dissolving the product in nitric acid. He called the oxide of the soluble salt lanthana. It took him three more years to separate the lanthana further into didymia and pure lanthana. Didymia, although not further separable by Mosander's techniques was a mixture of oxides.

In 1842 Mosander also separated the ytteria into three oxides: pure ytteria, terbia and erbia (all the names are derived from the town name "Ytterby"). The earth giving pink salts he called terbium; the one which yielded yellow peroxide he called erbium.

So in 1842 the number of rare earth elements had reached six: yttrium, cerium, lanthanum, didymium, erbium and terbium.

Nils Johan Berlin and Marc Delafontaine tried also to separate the crude ytteria and found the same substances that Mosander obtained, but Berlin named (1860) the substance giving pink salts erbium and Delafontaine named the substance with the yellow peroxide terbium. This confusion led to several false claims of new elements, such as the mosandrium of J. Lawrence Smith, or the philippium and decipium of Delafontaine.

There were no further discoveries for 30 years, and the element didymium was listed in the periodic table of elements with a molecular mass of 138. In 1879 Delafontaine used the new technique of optical flame spectroscopy and found new spectral lines in didymia, and also in 1879 the new element samarium was isolated by Paul Émile Lecoq de Boi*****audran from the mineral samarskite.

The samaria earth was further separated by Lecoq de Boi*****audran in 1886 and a similar result was obtained by Jean-Charles Galissard de Marignac by direct isolation from samarskithe. They named the element gadolinium after Johan Gadolin, and the oxide was gadolinia.

Further spectroscopic analysis between 1886 and 1901 of samaria, ytteria and samarskite by William Crookes, Lecoq de Boi*****audran and Eugène-Anatole Demarçay yielded new spectroscopic lines indicating an unknown element. Fractional crystallization yielded europium in 1901.

In 1839 the third source for rare earths became available, a mineral similar to gadolinite, uranotantalum (now samarskite). This mineral from Miass in the southern Ural Mountains was described by Gustave Rose. The Russian chemist R. Harmann postulated the new element ilmenium must be present in the mineral, but later Christian Wilhelm Blomstrand, Jean Charles Galissard de Marignac, and Heinrich Rose only found tantalum and niobium.

The exact number of rare earth elements was unclear and a maximum number of 25 was estimated. The use of x-ray spectra (obtained by diffraction in crystals) of Henry Moseley made it possible to determine the atomic numbers. The absolute number of lanthanides had to be 15, with a still missing element 61.

Using this technique Moseley proved that hafnium was not a rare earth element and that the claims of Georges Urbain of having discovered element 72 were false.

In the 1940s Frank Spedding developed an ion exchange procedure for separating and purifying the rare earth elements.

The principal sources of rare earth elements are the minerals bastnäsite, monazite, and loparite and the lateritic ion-adsorption clays. Despite their high relative abundance, rare earth minerals are more difficult to mine and extract than equivalent sources of transition metals (due in part to their similar chemical properties), making the rare earth elements relatively expensive. Their industrial use was very limited until efficient separation techniques were developed, such as ion exchange, fractional crystallization and liquid-liquid extraction during the late 1950s and early 1960s. [3]
3. Abbreviations

The following abbreviations are often used:

* RE = rare earth
* REM = rare earth metals
* REE = rare earth elements
* REO = rare earth oxides
* LREE = light rare earth elements (La-Sm)
* HREE = heavy rare earth elements (Eu-Lu)

4. Technological applications

These rare-earth oxides are used as tracers to determine which parts of a watershed are eroding. Clockwise from top center: praseodymium, cerium, lanthanum, neodymium, samarium, and gadolinium. [4]

Rare earth elements are incorporated into many modern technological devices, including superconductors, samarium-cobalt and neodymium-iron-boron high-flux rare-earth magnets, electronic polishers, refining catalysts and hybrid car components (primarily batteries and magnets). [5] Rare earth ions are used as the active ions in luminescent materials used in optoelectronics applications, most notably the Nd:YAG laser. Erbium-doped fiber amplifiers are significant devices in optical-fiber communication systems. Phosphors with rare earth dopants are also widely used in cathode ray tube technology such as television sets. The earliest color television CRTs had a poor-quality red; europium as a phosphor dopant made good red phosphors possible. Yttrium iron garnet (YIG) spheres have been useful as tunable microwave resonators. Rare earth oxides are mixed with tungsten to improve its high temperature properties for welding, replacing thorium, which was mildly hazardous to work with.
5. Global rare earth production

Global production 1950-2000

Until 1948, most of the world's rare earths were sourced from placer sand deposits in India and Brazil. [6] Through the 1950s, South Africa took the status as the world's rare earth source, after large rare earth bearing veins were discovered in Monazite. [6] Until the 1980s, the Mountain Pass rare earth mine in California was the leading producer. Today, the Indian and South African deposits still produce some rare earth concentrates, but they are dwarfed by the scale of Chinese production. China now produces over 97% of the world's rare earth supply, mostly in Inner Mongolia. [7] [5]

The highest concentrations of mineable rare earth elements are Inner Mongolia, China, Mountain Pass, California, and Mount Weld, Australia. [7] [8]

The use of rare earth elements in modern technology has increased dramatically over the past years. For example, dysprosium has gained significant importance for its use in the construction of hybrid car motors. [9] Unfortunately, this new demand has strained supply, and there is growing concern that the world may soon face a shortage of the materials. [10] In several years, worldwide demand for rare earth elements is expected to exceed supply by 40,000 tonnes annually unless major new sources are developed. [11] All of the world's heavy rare earths (such as dysprosium) are sourced from Chinese rare earth sources such as the polymetallic Bayan Obo deposit. [7] [12] Illegal rare earth mines are common in rural China and are often known to release toxic wastes into the general water supply. [7] [13] The Mountain Pass rare earth mine in California is projected to reopen in 2011. [7] A site at Thor Lake in the Northwest Territories is also under development. Locations in Vietnam have also been considered. [7] [11]

Chinese export quotas have also resulted in a dramatic shift in the world's rare earth knowledge base. For example, the division of General Motors which deals with miniaturized magnet research shut down its US office and moved all of its staff to China in 2006. [14] On Sept. 1, 2009, China announced plans to reduce its quota to 35,000 tons per year in 2010-2015 to conserve scarce resources and protect the environment. [15] In May 2010, China announced a major, five-month crackdown on illegal mining in order to protect the environment and its resources. This campaign is expected to be concentrated in the South, where most mines are smaller. [16] Other sources of rare earth have been searched to avoid shortages and China's monopoly, mainly in Australia, Brazil, Canada, South Africa and the United States. [17] However, mines in these countries were closed when China undercut world prices in the 1990s, and it will take a few years to restart production. Japan's former foreign minister Katsuya Okada raised a protest against the effect of China's sudden action on worldwide production. [18] In response to the continued detainment of a Chinese fishing boat captain by the Japanese Coast Guard, China instituted an export ban on rare earth shipments to Japan on 22 September 2010, according to the New York Times.[1] But the Wall Street Journal states China has denied the export ban [2]
6. Geologic distribution

Due to lanthanide contraction, yttrium, which is trivalent, is of similar ionic size to dysprosium and its lanthanide neighbors. Due to the relatively gradual decrease in ionic size with increasing atomic number, the rare earth elements have always been difficult to separate. Even with eons of geological time, geochemical separation of the lanthanides has only rarely progressed much farther than a broad separation between light versus heavy lanthanides, otherwise known as the cerium and yttrium earths. This geochemical divide is reflected in the first two rare earths that were discovered, yttria in 1794 and ceria in 1803. As originally found, each comprised the entire mixture of the associated earths. Rare earth minerals, as found, usually are dominated by one group or the other, depending upon which size-range best fits the structural lattice. Thus, among the anhydrous rare earth phosphates, it is the tetragonal mineral xenotime that incorporates yttrium and the yttrium earths, whereas the monoclinic monazite phase incorporates cerium and the cerium earths preferentially. The smaller size of the yttrium group allows it a greater solid solubility in the rock-forming minerals that comprise the Earth's mantle, and thus yttrium and the yttrium earths show less enrichment in the Earth's crust, relative to chondritic abundance, than does cerium and the cerium earths. This has economic consequences: large orebodies of the cerium earths are known around the world, and are being actively exploited. Corresponding orebodies for yttrium tend to be rarer, smaller, and less concentrated. Most of the current supply of yttrium originates in the "ion adsorption clay" ores of Southern China. Some versions of these provide concentrates containing about 65% yttrium oxide, with the heavy lanthanides being present in ratios reflecting the Oddo-Harkins rule: even-numbered heavy lanthanides at abundances of about 5% each, and odd-numbered lanthanides at abundances of about 1% each. Similar compositions are found in xenotime or gadolinite.

Well-known minerals that contain yttrium include gadolinite, xenotime, samarskite, euxenite, fergusonite, yttrotantalite, yttrotungstite, yttrofluorite (a variety of fluorite), thalenite, yttrialite. Small amounts occur in zircon, which derives its typical yellow fluorescence from some of the accompanying heavy lanthanides. The zirconium mineral eudialyte, such as is found in southern Greenland, also contains small but potentially useful amounts of yttrium. Of the above yttrium minerals, most played a part in providing research quantities of lanthanides during the discovery days. Xenotime is occasionally recovered as a byproduct of heavy sand processing, but has never been nearly as abundant as the similarly recovered monazite (which typically contains a few percent of yttrium). Uranium ores processed in Ontario have occasionally yielded yttrium as a byproduct.

Well-known minerals that contain cerium and the light lanthanides include bastnaesite, monazite, allanite, loparite, ancylite, parisite, lanthanite, chevkinite, cerite, stillwellite, britholite, fluocerite, and cerianite. Over the years, monazite (marine sands from Brazil, India, or Australia; rock from South Africa), bastnaesite (from Mountain Pass California, or several localities in China), and loparite (Kola Peninsula, Russia) have been the principal ores of cerium and the light lanthanides.

A few sites are under development outside of China, the most significant of which are the Nolans Project in Central Australia, the remote Hoidas Lake project in northern Canada, Mountain Pass in California [19] , and the Mt. Weld project in Australia. [20] The Hoidas Lake project has the potential to supply about 10% of the $1 billion of REE consumption that occurs in North America every year. [21]

Quantum Rare Earth Development, a Canadian company, is currently conducting test drilling and economic feasibility studies toward opening a niobium mine in Southeast Nebraska. [22]

World Mine Production (Tonnes) [23]
Country 2006 2007 China 119,000 120,000 India 2,700 2,700 Brazil 730 730 Malaysia 200 200 Thailand - - Australia - - U.S. - - Other Countries NA NA Total (rounded) 123,000 124,000
<>
1 2
Home | License
Wapedia: For Wikipedia on mobile phones

http://wapedia.mobi/en/Rare_earth_element#4.