1600毫米的来源是哪里呢?这里显示M1A2(比M1A1更先进)对动能穿甲弹防护力600毫米,对聚能破甲弹为1300毫米
M1主战坦克的复合装甲在M1主战坦克定型之前,称为XM1主战坦克。1973年2月,军方提出的战技指标是:“正面左右各30度的弧形区内,装甲可以抵御射击距离800米的115毫米尾翼稳定脱壳穿甲弹(APFSDS)的攻击,或者127毫米破甲弹(HEAT)的攻击。”
115毫米尾翼稳定脱壳穿甲弹在1000米射击距离上,垂直命中时可以击穿237毫米厚的均质钢装甲(RHA)。而在20世纪70年代,125毫米的破甲弹可以摧毁是它口径4倍厚的均质钢装甲,即破甲厚度达500毫米。根据这一要求,军方决定XM1坦克的车体正面和炮塔正面采用复合装甲。
1989年2月号的美国《国际武装力量》杂志报道,“东西方最先进的主战坦克正面装甲的防御能力,对动能弹和化学能弹分别为350毫米和750毫米厚的均质钢装甲。如果这一情报可信的话,那么,M1坦克正面的复合装甲的防御能力完全可以达到这一水平”。由此可以推断出,M1坦克炮塔正面装甲的结构为内外两层钢装甲,中间加一层厚厚的、无约束的陶瓷装甲。
根据“对化学能弹的防护能力要远高于对动能弹的防护能力”这一点可以判断,其复合装甲的类型为无约束型复合装甲。无约束型陶瓷复合装甲,对超高速金属射流有相当高的防御能力,而对速度相对低(与金属射流相比)的尾翼稳定脱壳穿甲弹则没有那么大的防护能力。
夹持陶瓷装甲的钢板为双硬度装甲钢,外硬内韧。高硬度的外层装甲,可以极大地消耗弹丸的动能,甚至使弹丸破碎;而韧性好的内层装甲,则可以进一步吸收残余的动能,本身不致破裂。据称,内层的陶瓷装甲材料为氧化铝陶瓷(Al2O3),这种陶瓷材料的价格比较便宜,抗破甲弹的性能相当好。这种复合装甲对动能弹的防护能力为350毫米,质量系数Em为1.18(质量系数Em是对于一定的装甲,具有同等防护能力的相关装甲相当于均质钢装甲的重量比值);对化学能弹的防护能力为750毫米,质量系数为2.54。Ml坦克复合装甲的平均密度为5488千克/米3,而均质钢装甲的密度则为7850千克/米3,前者仅相当于后者的三分之二。
无约束型陶瓷复合装甲对动能弹的防护效果,除了冲击阻抗梯度外,没有其他效应。而间隔复合装甲,由于空气密度的变化,有附加的防护效果。
关于无约束陶瓷复合装甲的质量系数,这里引用1995年6月份《国际防务评论》中奥格凯维茨论文中的一段话:“根据破甲的流体力学理论,在超高速射流的冲击下,装甲材料变为流变体,这时起主要作用的是雨果纽弹性极限(高速冲击下的强度)。由于陶瓷材料的雨果纽强度是钢的十多倍,它可以更有效地抵御破甲弹的射流,也就不难理解了。特别是陶瓷装甲夹在两层钢板之间更为有效。20世纪70年代西德的试验表明,陶瓷装甲的质量系数为2.3。”由此看来,Ml坦克复合装甲对破甲弹的质量系数为2.54还是可信的。
M1主战坦克
M1A1坦克的复合装甲 M1A1坦克的主要改进处是换装了120毫米滑膛炮,在装甲防护上也有改进。表现在炮塔正面的复合装甲采用抗弹性能更好的陶瓷材料,陶瓷装甲厚度增加了25毫米。
根据推测,其炮塔正面复合装甲对动能弹的防护水平相当于400毫米厚的均质装甲,对破甲弹的防护水平相当于1000毫米均质钢装甲。陶瓷装甲的材料由氧化铝改为棚化钛(TiB2),抗弹性能更好。可以计算出复合装甲的平均密度为5801千克/米3,对动能弹的质量系数为1.18不变,而对破甲弹的质量系数提高到2.95。
M1A1HA和M1A2的复合装甲 为了提高M1A 1坦克的防护性能,1988年进一步制成了装贫铀装甲的M1A1坦克,称为M1A1HA坦克。1991年的海湾战争中,许多M1A1坦克在现地加装贫铀装甲,改装成M1A1HA坦克。根据推测,其炮塔正面复合装甲的抗弹能力,对动能弹为600毫米均质钢装甲,对破甲弹为1300毫米均质钢装甲。
M1A2与M1A1HA相比,主要改进处是采用了车际信息系统、车长用独立热像仪和车辆电子学系统等,而在装甲防护上没有什么变化。从M1A1到M1A2,坦克的战斗全重由57.15吨增加到63.085吨,增加了5935千克,增加的部分包括了贫铀装甲的重量4500千克。贫铀装甲的结构为网状贫铀,根据计算,其厚度约为105毫米,这样,各种装甲材料的厚度分别为:钢125毫米;硼化钛95毫米;贫铀105毫米。复合装甲的平均密度为10317千克/米3。毫无疑问,贫铀的极高密度(18500千克/米3)是增强其抗弹能力的基础,但也使其质量系数降低,对动能弹为Em=1.0,对破甲弹为Em=2.16。