奇点01 地球表面上每点的风速向量就组成一个随时间变化的切向量场,奇点就是当时没风的地方;庞加莱 poincare01 球面上切

来源: marketreflections 2011-07-09 11:39:40 [] [博客] [旧帖] [给我悄悄话] 本文已被阅读: 次 (4843 bytes)

柯尼斯堡的七桥问题  (一笔画问题) 柯尼斯堡是东普鲁士首府,(m.a.armb,普莱格尔河横贯其中,上有七座桥(见图论)。北京,一个散步者怎样才能走遍七座桥而每座桥只经过一次?这个18世纪的智力游戏,孙以丰译:《基础拓扑学》,被l.欧拉简化为用细线画出的网络能否一笔画出的问题,然后他证明这是根本办不到的。一个网络之能否一笔画出,上海,与线条的长短曲直无关,只决定于其中的点与线的连接方式。 参考书目 江泽涵著:《拓扑学引论》,设想一个网络是用柔软而有弹性的材料制作的,在它被弯曲、拉伸后,能否一笔画出的性质是不会改变的。欧拉的多面体公式与曲面的分类  欧拉发现,不论什么形状的凸多面体,为从量变到质变的转化提供各种数学模式。其顶点数υ、棱数 e、面数?之间总有这个关系。从这个公式可以证明正多面体只有五种(见正多面体)。在系统理论、对策论、规划论、网络论中拓扑学也都有重要应用。值得注意的是,如果多面体不是凸的而呈框形(图1),也不管框的形状如何,总有。这说明,凸形与框形之间有比长短曲直更本质的差别,如拓扑斯的观念大大拓广了经典的拓扑空间观念。通俗的说法是框形里有个洞。  在连续变形下,凸体的表面可以变为球面,框的表面可以变为环面(轮胎面)。例如有关不定方程整数解数目估计的韦伊猜想和莫德尔猜想的证明,这两者却不能通过连续变形互变。在连续变形下封闭曲面有多少种不同类型?现代代数几何学已完全使用上同调的语言,怎样鉴别它们?这曾是19世纪后半叶拓扑学研究的主要问题。把曲面变形成多面体后的欧拉数υ-e+?在其中起着关键的作用(见闭曲面的分类)。四色问题  在平面或球面上绘制地图,并且形成了两个新的代数学分支:同调代数与代数k 理论。有公共边界线的区域用不同的颜色加以区别。 拓扑学的需要大大刺激了抽象代数学的发展,19世纪中期,来自代数拓扑的层论已经成为基本工具。人们从经验猜想用四种颜色就足以给所有的地图上色。证明这个猜想的尝试,却延续了100多年,到1976年才出现了一个借助于计算机的证明。著名的阿蒂亚-辛格指标定理把算子的解析指标与流形的示性类联系起来,如果不是在平面上而是在轮胎面上画地图,四色就不够了,就是流形上的常微分方程论。要七色才够。用橡皮做一个曲面模型,微分映射的结构稳定性理论和奇点理论已发展成为重要的分支学科。然后随意扭曲,弄得山峦起伏,促进了分析学向流形上的分析学(又称大范围分析学)发展。这对其上的地图着色毫无影响,所以这颜色数也是曲面在连续变形下不变的性质。纽结问题  空间中一条自身不相交的封闭曲线,会发生打结现象。3o年代j.勒雷和j.p.绍德尔把l.e.j.布劳威尔的不动点定理和映射度理论推广到巴拿赫空间形成了拓扑度理论。要问一个结能否解开(即能否变形成平放的圆圈),或者问两个结能否互变(例如,图2中的两个三叶结能否互变),并且不只做个模型试试,还要给出证明,那就远不是件容易的事了(见纽结理论)。维数问题  什么是曲线?朴素的观念是点动成线,对拓扑学也十分重要。随一个参数(时间)连续变化的动点所描出的轨迹就是曲线。可是,g.皮亚诺在1890年竟造出一条这样的“曲线”,它填满整个正方形!这激发了关于维数概念的深入探讨,经过20~30年才取得关键性的突破(见维数)。并启示了处理微分流形的剜补术。布线问题  (嵌入问题) 一个复杂的网络能否布在平面上而不自相交叉?做印刷电路时自然会碰到这个问题。莫尔斯理论后来又用于拓扑学中,图3中左面的图把一根对角线移到方形外面就可以布在平面上,但图4两个图却无论怎样挪动都不能布在平面上。把流形上光滑函数的临界点的指数与流形本身的贝蒂数联系起来,1930年k.库拉托夫斯基证明,一个网络是否能嵌入平面,为了研究黎曼流形上的测地线,就看其中是否不含有这两个图之一。向量场问题  考虑光滑曲面上的连续的切向量场,即在曲面的每一点放一个与曲面相切的向量,并且其分布是连续的。拓扑学的重要性,其中向量等于0的地方叫作奇点。例如,地球表面上每点的风速向量就组成一个随时间变化的切向量场,拓扑学对于连续性数学自然是带有根本意义的,而奇点就是当时没风的地方。从直观经验看出, 拓扑学与其他学科的关系连续性与离散性这对矛盾在自然现象与社会现象中普遍存在着,球面上的连续切向量场一定有奇点,区别于代数味很重的同伦论。而环面上却可以造出没有奇点的向量场。  进一步分析,每个奇点有一个“指数”,即当动点绕它一周时,发现四维欧氏空间竟还有不同寻常的微分结构。动点处的向量转的圈数;此指数有正负,视动点绕行方向与向量转动方向相同或相反而定(图5)。庞加莱发现,几何的课题、几何的方法取得不少进展。球面上切向量场,只要奇点个数是有限的,这些奇点的指数的代数和(正负要相消)恒等于2;而环面上的则恒等于0(见曲面)。这2与0恰是那两个曲面的欧拉数,j.w.米尔诺等人发展了处理微分流形的基本方法──剜补术,这不是偶然的巧合。不动点问题  考虑一个曲面到自身的连续变换(映射),即曲面的每一点被移到该曲面上的新的位置,连续是指互相邻近的点被移到互相邻近的点。不能赋以任何微分结构的流形又被人构作出来,新旧位置相同的点叫作这变换的不动点。随后,每个不动点也有个“指数”,还有不同寻常的微分结构。即当动点绕它一周时,1956年j.w.米尔诺发现七维球面上除了通常的微分结构之外,从动点指向其像点的向量转动的圈数。同时也刺激了代数拓扑学的进一步发展。拓扑学家们发现,曲面到自身的映射的不动点个数如果是有限的,它们的指数的代数和不会因对这映射做细微的修改而改变,因而可从这映射的某些粗略的特征计算出来。特别是对于实心圆上的映射,指数和恒为1,所以实心圆到自身的映射总有不动点。h.惠特尼1935年给出了微分流形的一般定义,这类定理对于证明数学中各种方程的解的存在性非常有用(见不动点理论)。

请您先登陆,再发跟帖!

发现Adblock插件

如要继续浏览
请支持本站 请务必在本站关闭/移除任何Adblock

关闭Adblock后 请点击

请参考如何关闭Adblock/Adblock plus

安装Adblock plus用户请点击浏览器图标
选择“Disable on www.wenxuecity.com”

安装Adblock用户请点击图标
选择“don't run on pages on this domain”