这是 http://matsci.hubu.edu.cn/relixue/Uploadfiles/zwja/rt4.ppt 的 HTML 档。
G o o g l e 在网路漫游时会自动将档案转换成 HTML 网页来储存。
统 计 物 理 学
第六章 近独立粒子的最概然分布
统计物理学要解决的问题
1、建立物质宏观量的行为定律
to establish the behavior laws for macroscopic quantities of a substance.
2、基于原子和分子的思想,验证热力学定律
to offer a theoretical substantiation(证实) of thermodynamic laws on the basis of atomic and molecular ideas
粒子的能级化描述方式
热力学默认了每个粒子都是相同的:能量相同、质量相同等等。
统计物理学认为粒子是有差别的。如何处理这种差别是重点。
举 例
对于大量粒子的系统,能量应该是连续的。
为了分析的方便,将能量按等间距划分出区间,在区间内的近似认为在某个能级上,如右图:
系统的特征与描述
粒子不是静止的,每个粒子的运动速度不是完全相同的,而是不断运动的。可以用一种速率的分布描述(右图只是举例)
在很小的能量间隔中,粒子的数目为n(l)。
统计物理学的目的就是找出n(l) !以此为出发点,可以解决各种问题
统计物理解决问题举例
一个三能级系统,0, 20, 30中,每个能级有6个坐位,共有6个完全相同的粒子,总能量为120,每个坐位只能放一个,粒子如何分布?
粒子可以采取的分布方式为:
上图为粒子可能填充的形式,下图为分布函数,四种可能填充出现的数目分别是1,6×15×6, 153, 202。
粒子的性质与描述
虽然统计物理学不考虑粒子的内部结构,但考虑粒子的性质:经典的还是量子的。如果是量子的,那么是费米的还是玻色的。不同的性质,分布n(l)会不一样。
如果粒子遵从经典力学的运动规律,对粒子的描述称为经典描述;如果粒子遵从量子力学的运动规律,对粒子的描述称为量子描述。
下面根据运动规律先分别描述。
§6.1 粒子运动的经典描述
经典粒子:气体分子、金属离子。。。
如果用快速照像机对经典粒子拍照,可以得到不同时刻粒子的照片,比较两张,就可以对粒子的运动进行描述。
1、描述位置的变化
2、描述速率的大小
设粒子的坐标与势能相关,而速度与动能相关,则有:
什么是近独立?
独立是不相互影响,无作用,即势能为0
Newton’s classical mechanics
(经典力学的解决方法)
忽略分子内的结构,看成一个点.
The equation of Newton’s motion for each of the N particles.(牛顿方程)
Fih:i’th与h’th分子的作用力;vi: velocity.
求和存在的问题:1)要知道作用力或空间相关的作用势;
2)要知道6N个初始条件:每个分子的三维坐标与动量。
3)假设上述条件已知,求和计算分子的路径。
困 难 与 解 决 方 法
数学计算上的求和的难度,使其几乎不可能。因为系统的粒子数达到1025m-3。
即使知道了粒子的路径和运动方程,也未必能提供以系统作为一个整体有用的信息。
在一个大量粒子的系统中, statistical or probability laws take effect that are foreign to (不适合于) a system containing a small number of particles(少数粒子的系统).
经典描述(概念)
每个粒子均用r个坐标和r个动量描述。
即一个粒子的运动状态可用2r个参量描述。
2r个参量构成了粒子的一个空间“μ空间”。
“我们常看到的一个粒子在3维空间的运动” 变成了一个粒子在
“6维空间内一个代表点的移动”
(一)自由粒子
粒子坐标可以在0-L的范围内取值。
考虑一个方向的坐标变化与动量变化,可以:
“6维空间分解为3个2维的子空间”,每个方向1个子空间。
(二)线性谐振子
基本运动方程:
这样的运动可以用椭园表示:
含义:一个方向可以确定一个子空间。
§6.2 粒子运动的量子描述
在微观世界,粒子的运动要用量子的方法描述,什么是量子的方法?
“ 波 ”
波有什么好处?不能确定粒子的确切位置,也就是说 可以不考虑粒子的位置。
能量动量公式(略)
“测不准原理”:
量子态
微观粒子的运动 状态:“量子态”
对于微观粒子,这是最小的能量状态。
对于电子,其状态除了能级还包含了自旋的因素。
(一)自旋
粒子含自旋,在磁场下的最小能量。
自旋磁矩与角动量之比:
其中,自旋角动量量子数为mS=1/2:
(二)线性谐振子
量子化的振动:
能量是等间距的。
(三)量子化的自由粒子
在势垒高度无穷,长度L内自由运动的粒子,粒子以驻波的形式运动,由此可以导出其运动规律。
能量分析
三维能量公式:
n 表示量子态数, 具有分立能级的特性,可能的能量状态数目。由公式可以看出,其值与坐标无关。
能量简并:
当粒子的能量为 时,可能的量子态有6个。因此,能级是简并的,简并度为6。
量子数h的理解
量子态n的取值为整数,平均一个量子态的体积是1(右图为示意性的二维图)
在体积V内,动量在px-px+dpx范围内的dnx取值为:
测不准原理:
h是μ空间的最小相的边长, h3是相空间的最小体积,一个量子态占据一个最小体积。
态密度
动量从p~p+dp范围内的量子态数:
换算成能量密度:
态密度:单位能量范围内的量子态数:
§6.3 系统微观运动状态的描述
在全同和近独立系统的条件下,系统的普遍性质
全同性
近独立性
微观运动状态
微观运动状态即“力学运动状态”
以一维为例解释:
μ空间的一个点表示一个粒子的微观运动状态。
系统在μ空间的N个点表示系统的微观运动状态。
多维μ空间的N个点表示系统的一个微观运动状态。
微观运动状态的差异
经典描述:粒子的轨道是可以跟踪的,每个粒子均可以识别。
经典力学认为:任意交换两个粒子的坐标和动量时,系统的微观运动状态不同。(可识别,考虑了坐标)
系统的微观运动状态
量子描述:量子性的粒子不可跟踪其运动轨迹,运用的是测不准原理和几率分布。
量子力学认为,任意交换两个粒子,系统的微观运动状态相同。 (不可识别,不考虑坐标)
量子的粒子在什么情况下可以近似为经典的?
粒子的量子性
Fermions follow: ( 费米子遵从不相容原理)
the Pauli exclusion principle
in a system of N identical fermions one cell in the -space can contain no more than one representative point.(一个位置最多放一个粒子)
in a system of N identical bosons one cell in the -space can contain any number representative points from zero to N. (一个位置可以放任意个粒子)
费米子
经典
玻色子
2个粒子放在三个格子的放法?
§6.4 等概率原理
热力学系统的宏观状态与粒子的微观运动状态是否有联系?
热力学系统的宏观状态用热力学参数表征:体积V、粒子数N、压强P、能量E等。
系统处在平衡态,宏观物理量有确定值,系统的微观状态会如何?是否有确定值?
答案是“否”。原因:微观粒子不停地运动,状态不断地改变。固体、液体、玻璃均如此。
原 因
宏观物理量有确定值,即体积V、粒子数N、压强P、能量E等有确定值。
以理想气体为例:限定体积V、N个粒子的总能量E,气体分子不停在碰撞器壁,维持压强为P。
下图为动量空间的例子。在体积和压强不变的情况下,确定的宏观条件对应的四种情形,其总的微观状态数为四种情况的微观状态数之和。
等概率原理(equiprobable)
上例共有1+6×15×6+153+202种可能实现的微观状态数,统计物理学不会追随系统微观状态的变化,只是在理论上考虑其出现的可能性,并用概率进行描述。
对于处在平衡态的孤立系统,系统各个可能的微观状态出现的概率是相等的。
------“等概率原理”,一种假设。即对微观状态的平均加权
附加内容“系综”
系统在固定的一个宏观状态下,微观状态是不断变化的。
在t =0时刻,给系统拍照,其微观状态为S0
在t =1时刻,给系统拍照,其微观状态为S1
在t =2时刻,给系统拍照,其微观状态为S2
直到t ∞,给系统拍照,可观测到最后一个没有重复的微观状态。
定义:{S0,S1,S2,…}为“系综”,即系统所有可能的微观状态组成一个集合。
用“空间”换“时间”。
各种系综
孤立系统的系综---微正则系综
闭合系统的系综---正则系综
开放系统的系综---巨正则系综
(第九章为其数学内容,略)
当系统在无穷长的时间内可能经历所有的微观状态,则该系统为“各态历经”的,“ergodic”。
§6.5 分布和微观状态
系统的约束条件:
在宏观上:
确定的粒子数N、总能量E、总体积V
在微观上:
能 级εl (l=1,2,3,…),
简并度 ωl (l=1,2,3,…),
粒子数 al (l=1,2,3,…),
分 布
能级εl 上有al 个粒子,形成了一个序列{al},称为一个分布。如上例中的分布分别是:
{0,6,0}, {1,4,1}, {2,2,2}, {3,0,3},
分布满足的条件是:
已经算出过其微观状态数分别是:1,6×15×6,153,202,下面根据粒子的性质导出其公式。
微观状态数
在能级εl (l=1,2,3,…),简并度 ωl (l=1,2,3,…),
粒子数 al (l=1,2,3,…)确定的条件下,经典粒子的占据能级方式:
在εl 能级上有ωl个位置供al个粒子占据,粒子的占据不受任何约束,即每个粒子可以等概率地占据ωl个位置中的任何一个。每个粒子都有个占据ωl方法, al个粒子共有 种排列方法。
经典的微观状态数
考虑整个分布函数时的微观状态数
如果任何两个粒子交换都能产生不同的微观状态,则N个粒子两两交换后的微观状态数是
包含了al个粒子相互交换粒子,总的微观状态数是
前例分析
玻色子的微观状态数
玻色子容纳的粒子数不受限制,设某个能级有8个简并度如图,存在7个档板:
不同的排列方式可以分为两种交换:
(1)粒子和隔离物;
(2)粒子和粒子。
等效图
分析:
粒子和隔离物排列在一条线上,任意交换导致总的排列方式:
(al +wl-1)! ,但包含了全同粒子在等效位置的交换al! 和隔离物的交换(wl-1)!
费米子的微观状态数
一个量子态最多能够容纳一个粒子。 ωl个量子态共容纳了al个粒子。共有 种排列方式
N个粒子的排列方式是:
结论比较
经典
玻色子
费米子
当al
简并度的讨论
在能量为εl ,简并度 ωl 的条件下,设能量范围所占的相空间(μ空间)体积为Δω,而一个量子态所占的相空间体积为hr,则有:
ωl = Δω / h r, r是维数。
ωl = D(εl ) Δε
§6.6 玻耳兹曼分布
上一节所学的是:已知分布{al},求其微观状态数。
根据前面的内容可以知道,分布不同,微观状态数不同,那么如何求微观状态数最多的分布?
定义:微观状态数最多的分布为“最概然分布”,宏观系统中最概然分布出现的概率最大。
玻耳兹曼系统粒子的最概然分布称为玻耳兹曼分布。
对上节导出的分布函数求解。
玻耳兹曼分布
利用Stirling公式(近似等式):
经典公式可以化为
最概然分布
最概然分布是使微观状态数极大的分布。同时微观状态数的对数也应该是最大。
最大时的一阶微分为0:
上式表示能级间交换粒子要保持微观状态数不变,但还要受到2个约束作用:
最概然分布
运用拉格朗日未定乘子的变分原理,定义2个乘子α-1和β分别乘上2式,得到
根据乘子法原理,上式中的每个系数都应为0
得到玻耳兹曼分布函数:
玻耳兹曼分布
平均每个量子态上的粒子数:
上式称为‘玻耳兹曼分布’函数。
量子态下的粒子数与能级:
几点说明
1、极大值处会有2阶微分为负。
2、N很大时,微小的偏离几乎是不可能的。
§6.7 玻色分布和费米分布
同理,玻色系统的微观状态数为:
玻色分布
运用拉格朗日未定乘子的变分原理,定义2个乘子α和β,考虑粒子数
玻色分布
平均每个量子态上的粒子数:
上式称为”玻色分布“函数。
费米分布
费米系统的微观状态数为:
费米分布
运用拉格朗日未定乘子的变分原理,定义2个乘子α和β,考虑粒子数
费米分布
平均每个量子态上的粒子数:
上式称为”费米分布“函数。
三种分布的比较
麦、玻分布函数:
玻、爱分布函数:
费、狄分布函数:
三种分布函数:
三种分布的讨论
当al /ωl
合并后有:
物理意义
在数学是的相同表示对应物理上的可分辨
量子的粒子可分辨:粒子间距离较远,密度较低,或者活动范围受到限制。
作业:P247: 6.4, 6.5
在很小的能量间隔中,粒子的数目为n(l)。统计物理学的目的就是找出n(l) !
所有跟帖:
• 湖北大学 统计物理学 -marketreflections- ♂ (52 bytes) () 10/27/2010 postreply 20:08:34
• 热力学宏观,布朗微观,但分子之间没有相互作用,数学期望不为零, piling up, herd movement -marketreflections- ♂ (6332 bytes) () 10/30/2010 postreply 17:56:14
• 股票价格遵循一般化的维纳过程是很具诱惑力的,也就是说,它具有不变的期望漂移率和方差率。维纳过程说明只有变量的当前值与未来的预测有 -marketreflections- ♂ (8451 bytes) () 10/30/2010 postreply 18:06:28
• 爱因斯坦的成果大体上可分两方面。一是根据分子热运动原理推导:在t时间里,微粒在某一方向上位移的统计平均值,即方均根值,D是微粒的 -marketreflections- ♂ (1706 bytes) () 10/30/2010 postreply 18:07:55
• 按经典热力学的观点,布朗运动严格来说属于机械运动,因此它表现出的是一种机械能。这种机械能是自发由内能转化而来,而与同时,它又在向 -marketreflections- ♂ (8292 bytes) () 10/30/2010 postreply 18:12:29