It suffices to prove the statement for the case x, y, z>=0.
The statement is equivalent to 
x^2y^2z^2 + 2{(xy-1)^2+(yz-1)^2+(zx-1)^2}+ x^2+y^2+z^2-2xy-2yz-2zx+2 >= 0,  but 
x^2y^2z^2 + 2{(xy-1)^2+(yz-1)^2+(zx-1)^2}+ x^2+y^2+z^2-2xy-2yz-2zx+2 >=  x^2y^2z^2 + 2{(xy-1)^2+(yz-1)^2+(zx-1)^2} -xy-yz-zx+2 (because x^2+y^2+z^2 >= xy + yz + zx). 
Write a=xy-1, b=yz-1, c=zx-1, the right hand side of the above equation is simplified to: 
     abc + ab + bc + ca + 2(a^2+b^2+c^2), which is >= 0 when a, b, c >= 0. If one of a, b, or c is negative, we know it is no less than -1. Suppose -1 
abc + ab + bc + ca + 2(a^2 + b^2 + c^2) >= abc + (a^2+b^2+c^2) >= |bc| + (a^2 + b^2 + c^2) >= 0
   
初等证明。感觉反而比分析方法复杂。
所有跟帖:
                    •                    
                    老班主真是功力非凡。不情之请,能不能看一下前面的85,86?
                     -wxcfan123- 
                    ♂                    
                        
                    
                                                            
                    
                    
                                        
                        (0 bytes)
                        ()
                        02/12/2015 postreply
                                                09:31:40
                    
                    
                    •                    
                    Not easy. I tried No. 85
                     -乱弹- 
                    ♂                    
                        
                    
                                                            
                        
                    
                                        
                    
                    
                                        
                        (0 bytes)
                        ()
                        02/12/2015 postreply
                                                16:23:57
                    
                    
                    •                    
                    好。还有另一个别致的思路,也不错
                     -魁北克人- 
                    ♂                    
                        
                    
                                                            
                    
                    
                                        
                        (58 bytes)
                        ()
                        02/12/2015 postreply
                                                13:43:14
                    
                    
                    •                    
                    这个很好。用判别式方法也是很自然的,但中间放缩等都不宗易
                     -乱弹- 
                    ♂                    
                        
                    
                                                            
                        
                    
                                        
                    
                    
                                        
                        (0 bytes)
                        ()
                        02/12/2015 postreply
                                                16:26:10