他把所有物理规则都按照矩阵形式书写,把已有的经典动力学方程和许多传统的物理量都按照矩阵数学来处理。在玻尔的量子化原子模型里,已经

来源: marketreflections 2011-09-02 21:08:36 [] [博客] [旧帖] [给我悄悄话] 本文已被阅读: 次 (19917 bytes)

http://blog.sina.com.cn/s/blog_53af17b30100pwcp.html

《转载》--量子江湖风云录 二

(2011-03-14 11:20:16)
标签:

量子力学

生命

宇宙

哲学

教育

分类: 哲学

6。

玻尔在原子模型上遇到的困境和爱因斯坦在光电效应难题上遇到的困境在思想方法上有非常相似的地方,那就是是否要放弃伟大的麦克斯韦和他的伟大理论 – 电磁理论。玻尔毅然决然地选择了放弃电磁理论和他的创立者。

年轻的玻尔很有直觉和敏锐的洞察力,他非常善于捕捉那些在别人看来不起眼但却真正有价值的东西。

一次偶然的机会,玻尔认识的一个人与玻尔谈起了原子光谱的问题,那人说原子光谱虽然繁多,但有一定规律可循,瑞士的一位数学教师巴尔末就从中总结出了一个简单明了的公式,其中有一个至关重要的数N是大于2的正整数。

这是一个经验公式,从来没有人知道这个公式背后隐藏的含义,也不知道用什么理论才能推导出这个公式。但当玻尔看到这个公式后,他一下惊呆了,他马上就把巴尔末公式与普朗克提出的能量的量子化公式联系了起来。很快他就形成了一个革命性的想法:“原子内部只能释放特定量的能量,说明电子只能在特定的‘势能位置’之间转换。也就是说,电子只能按照某些‘确定的’轨道运行,这些轨道,必须符合一定的势能条件,从而使得电子在这些轨道间跃迁时,只能释放出符合巴耳末公式的能量来” ,而这些能级是离散的,量子化的,被神秘的规律控制着。

随后他把这种量子化的大胆设想转化成了理论推导和数学方程,一举发表了三篇论文论原子结构的量子化解释,于1913年发表在了《哲学杂志》上。玻尔完成了量子革命的第三部曲,使得量子革命走到了青年时期,尽管还没有完全摆脱旧的经典体系,但她已经显示了震惊世界的力量。

玻尔推导的公式完全符合巴尔末经验公式描述的原子谱线,其跟实验误差仅为千分之一。玻尔的公式更预测了一些新的谱线,后来都得到了实验的证实。而且,玻尔的理论描述的更多,解释力达到了空前的程度。他后来在1922年以他的量子化原子理论获得了诺贝尔奖。

但在当时,这个理论却不被正统的物理学界接受,有物理学家公开表示“如果这些要用量子力学才能解释的话,那么我情愿不予解释。”另有人声称,要是量子模型是真实的话,他们宁愿退出物理学界。因为,他们觉得玻尔的理论有推翻传统电磁理论的企图。但玻尔的量子化原子理论是那样的成功,两年后就被大家普遍接受了。

玻尔的理论虽然很成功,却仍然不能完全取代麦克斯韦的电磁理论。在被迫无奈的情况下,玻尔企图调和他的量子理论与经典的电磁理论,提出了一个折衷的“对应”模型。他折衷的对应模型注定是短命的,因为量子革命的大潮不能容许这种妥协。

从根本思想上,量子化的离散性与传统的连续性是对立的,而且,玻尔的量子化原子结构理论体系已经蕴藏了“随机性”这个不见容于经典力学的重大思想。在玻尔的量子化体系中,我们不能判断一个电子何时何地会发生跃迁,从一个能级到另外一个能级,它是自发的,它表现为一种理论上不可能描述的随机过程,而这个过程不同于一般的随机过程。一般的随机过程,是有原因的,只是我们没有足够的信息描述这种原因,但理论上不排除描述的可能性。而玻尔量子化原子结构中电子的跃迁的随机性是无因之果,是自发的,至少从理论上没有计算电子跃迁条件的可能性。这实际上是在冲击传统的因果律,是相当严重的问题。

据说1919年,当时量子物理的三大巨头,玻尔,普朗克和爱因斯坦,聚集柏林就这个问题进行了探讨。爱因斯坦对玻尔理论中冲击因果律的反叛思想大为不满,也埋下了玻尔与爱因斯坦这两位科学巨匠长达几十年大辩论的种子。

正因为这样,玻尔折衷理论的短命就是是不可避免的,而玻尔也最终跨过了他那个折衷理论的尸体,领导他的团队创立了量子革命正宗的“哥本哈根”学派。1921年哥本哈根物理研究所成立,36岁的玻尔任所长。那些在量子力学中赫赫有名的大师们,就要正式登场了,他们将演绎一场惊心动魄的量子江湖战争。

7。

首先登场的叫德布罗意,一个法国物理学家曾经师从鼎鼎大名的朗之万。就是这个德布落意,在玻尔量子化原子结构理论遇到困境时,提出了一个革命性的设想,把电子也纳入了波动的范畴,后来成为爱因斯坦阵营的一员猛将,与玻尔的哥本哈根阵营拼死角斗。

前面说到玻尔的量子化原子结构模型虽然取得了巨大的成功,为量子革命立下了汗马功劳,但他的理论还不足以替代经典的麦克斯韦电磁理论,迫使玻尔走与电磁理论的折衷路线。

正是在这种困境中,德布罗意剑走偏锋,力图完全甩开麦克斯韦的电磁理论,考虑如何能够在玻尔的原子模型里面自然地引进一个周期的概念,以符合观测到的数据。而这个条件在玻尔的模型里是被是强加在电子的量子化模式里的,不是理论的推导。

德布罗意的思想很奇特。他从爱因斯坦的相对论出发,开始推论:把爱因斯坦的相对论用到电子身上,爱因斯坦相对论的著名公式把电子的能量与电子的质量和光速连接了起来,而普朗克著名的能量量子化公式又把能量和频率连接了起来,这样把两者一合并,用公式一推导,对一个电子来说,就有一个内禀的频率与之相随相伴。

这样就不得了!德布罗意继续推算,电子有一个内禀的频率,可以换算成电子在运行时必定伴随一个波!

结果便开始令人震惊了。

在此之前,无论是经典力学还是玻尔的量子化原子理论,都把电子看作是一个粒子,天经地义。但到了德布罗意这里,怎么七拐八拐把电子跟波扯到一块去了?这不麻烦大了吗?在前面,我们看到爱因斯坦反叛传统,用量子化思想挑战传统认定的光的波动性,引出了光的粒子性,使得光的波 - 粒对决空前火热,气氛相当火爆。而在光特性上的大战硝烟正浓的时候,德布罗意却在电子上把电子引向了波动的特性上来。

如果说光的波-粒大战已经够麻烦的了,那么电子的波-粒大战一定是不可收拾的烂摊子,因为电子是构成我们整个实实在在的宏观物质的一种微观粒子啊!当然,在后面我们可以看到,量子革命把构成实在物质的所有微观粒子都拉入了这一范畴,发动了名符其实的世界大战。

伴随电子的这种波,后来被成为“德布罗意波”,尽管它的速度可以比光速快很多,但据说由于这种波被德布罗证明不携带能量和信息,所以不违背爱因斯坦相对论。

当德布罗意宣布他的理论说明电子是个波的时候,几乎没人相信。德高望重的物理学大师们,为年轻一辈的反叛精神而大摇其头,直呼“人心不古,世道乱了”。据说德布罗意的恩师朗之万也对弟子的出格很伤脑筋,但还是把弟子的论文转交给爱因斯坦。令人没想到的是,爱因斯坦对德布罗意的理论却给予了高度评价。

有爱因斯坦撑腰,电子的波动性才得到学术界的重视。现在需要是实验证据,证明电子是波。

该当德布罗意成名,后来在1925年美国纽约的贝尔电话实验室的一个失败实验,却奇迹般地证明了电子的波动性,电子能够象光波一样发生衍射图案,其波动性数据与德布罗意的理论符合的非常好。

德布罗意成功了,理论和实验都证明了电子是波。但物理学麻烦了,光到底是波还是粒子?电子到底是波还是粒子?它们都有实验做自己的后盾,都有理论做自己的后盾。各路人马一起加入了这场的火热的大战,战局正酣。但问题是,这场战争怎么收场?

就在这个时候,玻尔哥本哈根阵营的一员猛将,海森保,要扬名立万,威震江湖了。由于海森堡的加入,使得战局更加混乱,更扑朔迷离。

8。

那是1925年,哥本哈根,慕尼黑和哥廷根成为量子革命的“金三角”。无疑哥本哈根是龙头老大,由德高望重的玻尔执掌,聚集了一批精英天才。

当时,海森堡在哥廷根,但跟哥本哈根的玻尔有很深的渊源,并在哥本哈根访问工作过,深受玻尔的赏识,他们关系很密切。

年轻而天才的海森堡决定对量子物理动大手术,彻底改变玻尔量子化原子结构理论的困境。他对当时玻尔的理论提出两方面的革命性思想。

一个是不能把不能观察的想象图像引入到理论中来,其实这也是当时哥本哈根学派内部慢慢出现的一种学术思想倾向。例如在玻尔的量子化原子模型中,就假定电子沿着不同的“轨道”以不同的频率绕原子核运转,而不同“轨道”有不同的能级,电子可以在这些不同能级的“轨道”间随机跃迁。这里海森堡要问的问题,谁证实过电子绕原子核运转的“轨道”?谁证实过电子绕原子核运转的“频率”?

海森堡的第二个革命性思想是,量子力学不同于经典力学,量子力学根本上要从数学来着手建立,而暂时不管其物理图像是什么,在这里,数学说了算。这个思想那是相当地革命。因为我们知道,在经典力学中,我们都是先从物理意义出发,寻求相关物理量之间的关系。例如,我们知道物体的运行速度(假设匀速运动),再知道物体的运行时间,然后我们寻求物体运行的距离等于速度乘以时间来获得距离的关系式。而在量子力学中,海森堡要先把数学描述引进来,然后再去寻求各个变量的物理意义。

这个革命性思想是一个双刃剑,可以给量子革命打开广阔的前景,也会给量子革命带来巨大的困惑。而这里的问题是,不采用这些革命性的思想,量子力学就不能有突破。与其停滞不前,还是先突破为好。

当时海森堡要找出原子结构中能量体系的基本原理,他认为的突破口还应该是研究原子的谱线问题,引入数学的虚振子方法。但当他把电子辐射按照虚振子的代数方法展开时,遇到了数学上几乎难以突破的困难,最后他不得不放弃了这个方向。

被逼无奈,海森堡把眼光放到了电子的运动上,他要通过数学来建立电子在原子中的运动方程,这就是后来称为量子力学的新体系,是相对于玻尔的老理论而言。

作为一个年轻的物理学家,海森堡开始摆弄一种奇怪而神秘的数学形式 - 矩阵。在当时的物理学界,真正懂得矩阵的人并不多,实际上听说过这种数学形式的人都不多。海森堡自己对矩阵也不熟,也在摸索。

无疑,矩阵这种数学形式是艰涩的,令人望而生畏的,至少对当时的物理学家来说。但是,矩阵最大特点是离散化,正好特别适合量子化的思维模式。所以当海森堡将矩阵这种数学形式应用到描述电子在原子内的运动方程时,很快就获得了巨大的成功。

他把所有物理规则都按照矩阵形式书写,把已有的经典动力学方程和许多传统的物理量都按照矩阵数学来处理。在玻尔的量子化原子模型里,已经有了电子的运动方程和量子化条件。原来是用傅立叶变换化作一系列简谐运动的叠加,展开式的每项都代表了特定的频率。现在,海森堡把它们彻底地改变成了矩阵形式。

这样,描述原子中电子的运动就有了一套矩阵数学形式的坚实基础。从海森堡建立的量子力学体系里,可以很自然地推导出量子化的原子能级和辐射频率,不需要象玻尔的模型要强加进去这些东西。更重要的是,量子力学的基本形式已经在海森堡这里得到了突破性的进展,为量子革命的气势磅礴奠定了坚实的数学基础。海森堡建立的量子论基础后来被成为“矩阵力学”,海森堡后来去剑桥讲学,他的革命性工作由他的前辈波恩于1925年寄给了《物理学杂志》得以发表,标志着量子力学体系首次公开亮相。那年海森堡才24岁!

然而,海森堡的“矩阵力学”导致的一个奇特现象令人百思不解,那就是把传统的动量P和位置Q这两个变量写成矩阵形式后相乘所得到的奇妙结果。

在经典力学里,如果要把两个量相乘,就是简单的乘法,与这两个量在乘法中的次序没有关系,这就是乘法的交换律。例如,牛顿第二定律:f = am 和f = ma 是等同的。但在海森堡的矩阵力学里,动量P与位置Q相乘的次序却对结果有很大影响,也就是说,P X Q 不等于 Q X P,不遵守乘法交换律。

这给海森堡提出了很大的挑战,质疑矩阵力学的人以此来发起攻击。而海森堡的回答是,量子力学不同于经典力学,在量子力学里,数学压倒一切。既然计算表明动量和位置的乘积与次序有很大关系,我们就应当相信。至于其背后隐藏的意义,再慢慢寻找。也就是说,在量子力学里游戏规则变了,数学前行,物理意义在后。

但人们没想到的是,这个P与Q相乘不遵守乘法交换律的数学背后隐藏着一个惊天大秘密,后来才被证明它就是大名鼎鼎的“测不准原理”。“测不准原理”这个中文翻译有误,容易引起误导,准确地翻译应该是“不确定性原理”(UNCERTAINTY PRINCIPLE)。这是后话。

海森堡离开哥廷根一段时间, 去剑桥讲学。海森堡不在哥廷根的日子里,海森堡的矩阵力学迷住了前辈波恩,波恩很快就找到了与他一起工作的年轻的数学天才约尔当一起合作发表了另一篇论文,《论量子力学》,用大量篇幅来阐明矩阵运算的基本规则,并把经典力学的哈密顿变换统统改造成为矩阵的形式。他们也算出了P X Q 和 Q X P 之间的差值。后来,海森堡回来后,他们三人又合作在1925年年底发表了《论量子力学II》,从而彻底建立了新量子力学的主体。

“在这种新力学体系的魔法下,普朗克常数和量子化从我们的基本力学方程中自然而然地跳了出来,成为自然界的内在禀性。如果认真地对这种力学形式做一下探讨,人们会惊奇地发现,牛顿体系里的种种结论,比如能量守恒,从新理论中也可以得到。这就是说,新力学其实是牛顿理论的一个扩展,老的经典力学其实被‘包含’ 在我们的新力学中,成为一种特殊情况下的表现形式。”

新生的矩阵力学一出世,就有雷霆万钧之力,很快就解决了电子自旋的难题,解决有着两个电子的原子——氦原子的问题,其威力很快扩大了前所未知的领域中。注定了要在物理学的历史上留下色彩斑斓的一页。

如果说海森堡将成为玻尔哥本哈根学派的一员猛将的话,那么爱因斯坦阵营也将出现另一员猛将,他就是赫赫有名的薛定谔。薛定谔要推出他的波动方程与海森堡的矩阵理论相抗衡,其威力很快就盖过了海森堡的矩阵理论,而他后来他驯养的“薛定谔的猫”更是令量子江湖中人闻“猫”丧胆,谈“猫”色变。

9。

哥本哈根阵营推出了矩阵力学建立了量子力学的基本体系,威震江湖。爱因斯坦阵营也不是吃干饭,薛定谔出场了。

那时,薛定谔已经是瑞士苏黎世大学的一位知名教授。他不在原子结构里折腾,而是另辟蹊径,很自然地从本阵营的德布罗意“相波”为出发点,建立理论。薛定谔在1925年底对爱因斯坦表达了他对德布罗意工作的极大兴趣和信任,决心创立他伟大的波动力学来与海森堡等创立的矩阵力学一较高下。

薛定谔仔细研究了德布罗意的思想,然后比较了玻尔当年的量子化原子理论和海森堡的矩阵理论。他意识到,玻尔当年是强加一个“电子分立能级”的假设,而海森堡用复杂的矩阵力学推出这一结果。海森堡想,老夫不走你们的路,也不用引入外部假设,只要把电子看成本门的德布罗意波来建立方程,就可大功告成。

薛定谔最后从经典力学的哈密顿-亚可比方程出发,利用数学的变分法和德布罗意方程,求出了一个非相对论的波动方程。后来这个方程成了20世纪威震整部物理学史的薛定谔波函数。

在薛定谔波函数方程里包含波函数,普朗克常数,体系的总能量,势能,等等。该方程的解是不连续的,依赖于整数N,其结果很精确地与实验结果吻合。这样,原子的光谱也同样可以从薛定谔的波动方程里被推导出来。

到1926年6月,薛定谔连续发表四篇重要论文,彻底建立了一种全新的量子力学体系 --- 波动力学,与海森堡等的矩阵力学争霸龙头老大。

薛定谔的波动力学体系,从它一出世,就赢得了物理学界的一片赞扬,守旧的老夫子们,似乎看到了薛定谔的波动力学体系能够回归传统,而其他物理学家则喜欢其体系的形式 – 微分方程,比起矩真力学的艰涩要可爱多了。爱因斯坦更是称赞薛定谔的体系是“源自于真正的天才”。

也正因为薛定谔的成功,把波-粒大战的战火烧的更加猛烈。因为现在量子力学有了两套完整的理论体系,一个是海森堡等的矩阵力学,它明显地拥抱电子的粒子性;另外一个就是薛定谔的波动力学,它明显地拥抱电子的波动性。在这两种理论的支持下,波-粒大战分外惨烈,大有鱼死网破之势。

尽管矩阵力学和波动力学彼此仇视,互不买账,但似乎它们有一个共同点,就是从数学出发建立理论体系,完全区别于传统的从物理意义出发建立理论(只是波动力学方面更愿意谈论物理图像)。这就给它们带来了一个共同的尴尬,有时不知道自己的理论表达的是什么意思。

在海森堡的矩阵力学里,我们不知道动量P与位置Q不遵从乘法交换律蕴藏着什么稀世珍宝。同样在薛定谔的波动力学里,也没人知道其波动函数隐藏什么惊天秘密。这就导致这轮波-粒大战既惨烈又神秘,而令人惊奇的是,薛定谔用来对抗敌手的波函数最后却成了地方阵营大厦的基石之一。

10。

“回顾一下量子论在发展过程中所经历的两条迥异的道路是饶有趣味的。第一种办法的思路是直接从观测到的原子谱线出发,引入矩阵的数学工具,用这种奇异的方块去建立起整个新力学的大厦来。它强调观测到的分立性,跳跃性,同时又坚持以数学为唯一导向,不为日常生活的直观经验所迷惑。但是,如果追究根本的话,它所强调的光谱线及其非连续性的一面,始终可以看到微粒势力那隐约的身影。这个理论的核心人物自然是海森堡,波恩,约尔当,而他们背后的精神力量,那位幕后的‘教皇’,则无疑是哥本哈根的那位伟大的尼尔斯·玻尔。这些关系密切的科学家们集中资源和火力,组成一个坚强的战斗集体,在短时间内取得突破,从而建立起矩阵力学这一壮观的堡垒来。

而沿着另一条道路前进的人们在组织上显然松散许多。大致说来,这是以德布罗意的理论为切入点,以薛定谔为主将的一个派别。而在波动力学的创建过程中起到关键的指导作用的爱因斯坦,则是他们背后的精神领袖。但是这个理论的政治观点也是很明确的:它强调电子作为波的连续性一面,以波动方程来描述它的行为。它热情地拥抱直观的解释,试图恢复经典力学那种形象化的优良传统,有一种强烈的复古倾向,但革命情绪不如对手那样高涨。打个不太恰当的比方,矩阵方面提倡彻底的激进的改革,摒弃旧理论的直观性,以数学为唯一基础,是革命的左派。而波动方面相对保守,它强调继承性和古典观念,重视理论的形象化和物理意义,是革命的右派。这两派的大战将交织在之后量子论发展的每一步中,从而为人类的整个自然哲学带来极为深远的影响。”

作为创立矩阵力学和波动力学的两位中心人物的海森堡和薛定谔互相极其厌恶对方的理论体系。哥本哈根学派的精神领袖玻尔为了消除矛盾,特意把薛定谔邀请到丹麦去进行讨论,但直到由于双方争论过于激烈,把薛定谔累病倒了,也没能消除隔阂。

到了1926年4月,两派的天才们如薛定谔,泡利,约尔当,都各自证明了虽然矩阵力学和波动力学看起来在形式上差异很大,但在数学本质上却是完全等价的,实际上它们都从经典的哈密顿方程而来,只是一个从粒子的运动方程为起点,一个从波动方程为起点。这样,两种力学实际上是可以互换的。

这虽然在表面上缓和了两派的矛盾,但对这些数学的诠释却难统一,而且隔阂越来越深。首先,他们的较量就从波动方程中神秘的“波函数” 展开。

“波函数” 是薛定谔建立自己理论体系时从数学上引进的一个函数形式,他自己根本不直到这个函数在物理上代表什么。实际上,大家谁也不知道这个波函数到底是什么东西,虽然大家都同意它是一件无价之宝。

这些物理学的天才们只有靠猜谜来探究这个神秘而无价的宝物“波函数”到底是什么了 (很好玩哈,物理学家竟然不知道自己发现的东西是什么,要靠猜谜来解决)。

他们大概只知道这个神秘的“波函数”一些特性;

(1)。不知其名,强曰之“波函数”。

(2)。它连续不断。

(3)。它没有量纲,却与电子的位置有联系。对于每一个电子来说,它都在一个虚拟的三维空间里扩展开去。

就是说,这个神秘的波函数如影随形地伴随着每一个电子,在电子所处的位置上如同一团云彩般地扩散开来。这云彩时而浓厚时而稀薄,但却是按照某种确定的方式演化。而且,这种扩散及其演化都是经典的,连续的,确定的。

这些特性神秘莫测,扑朔迷离,使得当时的物理学家们如坠云里雾里。

薛定谔自然猜自己发现的波函数是电子作为波在空间中的分布,因为把这个神秘的波函数与电子的电荷相乘,就代表了电荷在空间的分布。薛定谔把电子(或者不管什么微观粒子)看成是一团波,象云彩一样在空间中扩展开来。而波函数就是描述这种电子云彩在空间的分布的。很明显,薛定谔要强调一种传统的连续,他很不喜欢自己对手倡导的不连续性,诸如,光谱,跃迁,能级,矩阵,等这些概念。

几个月后薛定谔在慕尼黑大学演讲时提出了自己的猜测。薛定谔把电子和其它亚原子都说成是云彩一样的波,这很骇人听闻的。试想,那些组成我们的物质的“子们”都是云彩一样的波,那我们的物质世界是什么?是由波组成的?

尽管薛定谔说法很骇人听闻,但被哥本哈根学派的观点却要那么不骇人听闻,所以薛定谔的解释博得了台下听众的热烈掌声。

但就在这些掌声还没有平息的时候,哥本哈根学派的波恩教授(也就是海森堡的老师)站了起来,和蔼可亲地问薛定谔,你能肯定你发现的希世珍宝“波函数”就是彩云般电子波的空间分布吗?

这样的问话令薛定谔很是尴尬,他只能犹犹豫豫地说,不确定。听众便觉得惊异。薛定谔便反问波恩教授,那您说那“波函数”是什么?

波恩便说出了他的猜测,他的猜测令所有的物理学家都大吃一惊,他的猜测成了哥本哈根学派的基石之一,他的猜测在28年后才获得了诺贝尔奖。

波恩的猜测是:那个神秘的波函数是“骰子”!
请您先登陆,再发跟帖!

发现Adblock插件

如要继续浏览
请支持本站 请务必在本站关闭/移除任何Adblock

关闭Adblock后 请点击

请参考如何关闭Adblock/Adblock plus

安装Adblock plus用户请点击浏览器图标
选择“Disable on www.wenxuecity.com”

安装Adblock用户请点击图标
选择“don't run on pages on this domain”