化学发光(Chemiluminescence)又称为冷光(Cold Light),它是在没有任何光、热或电场等激发的情况下,由化

来源: marketreflections 2011-03-13 14:17:28 [] [博客] [旧帖] [给我悄悄话] 本文已被阅读: 次 (14706 bytes)

分子发光分析法

百科名片

某些物质的分子吸收一定能量后,电子从基态跃迁到激发态,以光辐射的形式从激发态回到基态,这种现象称为分子发光,在此基础上建立起来的分析方法为分子发光分析法。

目录

概述
特点
  1. 1.极高的灵敏度
  2. 2.具有较好的选择性
  3. 3.仪器装置比较简单
  4. 4.分析速度快
  5. 5.定量线性范围宽
基本原理
荧光和磷光的产生
  1. 1.激发过程
  2. 2.发射过程
反应的类型
  1. 1.气相化学发光
  2. 2. 液相化学发光
激发光谱和发射光谱
  1. 1.激发光谱
  2. 2.发射光谱
测量仪器
  1. 1.分离取样式
  2. 2.流动注射式
影响因素
  1. 1.荧光量子产率 又称荧光效率
  2. 2.荧光与分子结构的关系
  3. 3.环境因素对荧光光谱和荧光强度的影响
展开

编辑本段概述

  化学发光(Chemiluminescence)又称为冷光(Cold Light),它是在没有任何光、热或电场等激发的情况下,由化学反应而产生的光辐射。生命系统中也有化学发光,称生物发光(Bioluminescence),如萤火虫、某些细菌或真菌、原生动物、蠕虫以及甲壳动物等所发射的光。化学发光分析(Chemiluminescence Analysis)就是利用化学反应所产生的发光现象进行分析的方法。它是近30多年来发展起来的一种新型、高灵敏度的痕量分析方法。在痕量分析、环境科学、生命科学及临床医学上得到愈来愈广泛的应用。

编辑本段特点

  化学发光具有以下几个特点:

1.极高的灵敏度

  荧光虫素(LH2)(luciferin)、荧光素酶(luciferase)和磷酸三腺苷(ATP)的化学反应可测定2×10-17 mol/L的ATP,可检测出一个细菌中的的ATP含量。

2.具有较好的选择性

  由于可以利用的化学发光反应较少,而且化学发光的光谱是由受激分子或原子决定的,一般来说也是由化学反应决定的。很少有不同的化学反应产生出同一种发光物质的情况,因此化学发光分析具有较好的选择性。

3.仪器装置比较简单

  不需要复杂的分光和光强度测量装置,一般只需要干涉滤光片和光电倍增管即可进行光强度的测量。

4.分析速度快

  一次分析在1 min之内就可完成,适宜自动连续测定。

5.定量线性范围宽

  化学发光反应的发光强度和反应物的浓度在几个数量级的范围内成良好的线性关系。

编辑本段基本原理

  化学发光是基于化学反应所提供足够的能量,使其中一种产物的分子的电子被激发成激发态分子,当其返回基态时发射一定波长的光,称为化学发光,表示如下
  A + B → C﹡ + D
  C﹡→ C + hυ
  化学发光包括吸收化学能和发光两个过程。为此,它应具备下述条件:
  1化学发光反应必须能提供足够的化学能,以引起电子激发。
  2要有有利的化学反应历程,以使所产生的化学能用于不断地产生激发态分子。
  3激发态分子能以辐射跃迁的方式返回基态,而不是以热的形式消耗能量。
  化学发光反应的化学发光效率ΦCl,取决于生成激发态产物分子的化学激发效率Φr利激发态分子的发光效率Φf这两个因素。化学发光的发光强度ICl以单位时间内发射的光子数来表示,它等于化学发光效率ΦCl与单位时间内起反应的被测物浓度CA的变化(以微分表示)的乘积,通常,在发光分析中,被分析物的浓度与发光试剂相比,要小很多,故发光试剂浓度可认为是一常数,因此发光反应可视为是—级动力学反应,此时反应速率可表示为式中k为反应速率常数。由此可得:在合适的条件下,t时刻的化学发光强度与该时刻的分析物浓度成正比,可以用于定量分析,也可以利用总发光强度S与被分析浓度的关系进行定量分析,此时,将式(5-7)积分,得到如果取t1=0,t2为反应结束时的时间,则得到整个反应产生的总发光强度与分析物的浓度呈线性关系。

编辑本段荧光和磷光的产生

  荧光和磷光的产生涉及光子的吸收和再发射两个过程。

1.激发过程

  分子吸收辐射使电子能级从基态跃迁到激发态能级,同时伴随着振动能级和转动能级的跃迁。在分子能级跃迁的过程中,电子的自旋状态也可能发生改变。应用于分析化学中的荧光和磷光物质几乎都含有π→π*跃迁的吸收过程,它们部含有偶数电子。根据泡里不相容原理,在同一轨道上的两个电子的自旋方向要彼此相反,即基态分子的电子是自旋成对的,净自旋为零,这种电子都配对的分子电子能态称为单重态(singlet state),具有抗磁性。当分子吸收能量后,在跃迁过程中不发生电子自旋方向的变化,这时分子处于激发的单重态;如果在跃迁过程中还伴随着电子自旋方向的改变,这时分子便有两个自旋不配对的电子,分子处于激发三重态(triplet state),具有顺磁性。

2.发射过程

  处于激发态的分子是不稳定的,通常以辐射跃迁或无辐射跃迁方式返回到基态,这就是激发态分子的失活(deactivation)。辐射跃迁的去活化过程,发生光子的发射,即产生荧光和磷光;无辐射跃迁的去活化过程则是以热的形式失去其多余的能量,它包括振动弛豫、内转换、系间跨越及外转换等过程。如图3-2所示,S0、S1、S2分别表示分子的基态、第一和第二激发单重态;T1,T2分别表示第一和第二激发三重态。
  (1)振动弛豫(Vibration Relaxation,VR)。即由于分子间的碰撞,振动激发态分子由同一电子能级中的较高振动能级转移至较低振动能级的无辐射跃迁过程。发生振动弛豫的时间约为10-12 s数量级。
  (2)内转换(Internal Conversion,IC)。指在相同多重态的两个电子能级间,电子由高能级转移至低能级的无辐射跃迁过程。当两个电子能级非常靠近以致其能级有重叠时,内转换很容易发生。两个激发单重态或两个激发三重态之间能量差较小,并且它们的振动能级有重叠,显然这两种能态之间易发生内转换。
  (3)荧光发射。激发态分子经过振动驰豫降到激发单重态的最低振动能级后,如果是以发射光量子跃迁到基态的各个不同振动能级,又经振动驰豫回到最低基态时就发射荧光。从荧光发射过程明显地看到:荧光是从激发单重态的最低振动能级开始发射,与分子被激发至哪一个能级无关;荧光发射前后都有振动驰豫过程。因此荧光发射的能量比分子所吸收的辐射能量低,所以对于溶液中分子的荧光光谱的波长与它的吸收光谱波长比较,荧光的波长要长一些(Stock位移)。
  (4)系间跨越(Intersystem Crossing,ISC)是指不同多重态间的无辐射跃迁,同时伴随着受激电子自旋状念的改变,如S1→T1。在含有重原子(如或碘)的分子中,系间跨越最常见。这是因为在原子序数较高的原子中,电子的自旋和轨道运动间的相互作用变大,原子核附近产生了强的磁场,有利于电子自旋的改变。所以含重原子的化合物的荧光很弱或不能发生荧光。
  (5)外转换(External Conversion,EC)是指激发分子通过与溶剂或其他溶质分子间的相互作用使能量转换,而使荧光或磷光强度减弱甚至消失的过程。这一现象又称为“熄灭”或“猝灭”。
  (6)磷光发射。第一激发单重态的分子,有可能通过系间跨越到达第一电子激发三重态,再通过振动驰豫转至该激发三重态的最低振动能级,再以无辐射形式失去能量跃迁回基态而发射磷光。激发三重态的平均寿命为10-4~10 s,因此,磷光在光照停止后仍可维持一段时间。
请您先登陆,再发跟帖!

发现Adblock插件

如要继续浏览
请支持本站 请务必在本站关闭Adblock

关闭Adblock后 请点击

请参考如何关闭Adblock

安装Adblock plus用户请点击浏览器图标
选择“Disable on www.wenxuecity.com”

安装Adblock用户请点击图标
选择“don't run on pages on this domain”