http://www.chinabaike.com/article/baike/1002/2008/200805121480897_3.html
对称性和守恒律
长寿命的KL介子,而在剩下的KL介子中,大约一半的成分竟是原先产生□时并不存在的□介子!
所有的粒子都是相应的场的量子,所以可以说,物质的基本形态是场。场量在所有的时空点都存在,如果场的对称变换是在时空所有点上一齐进行的,这样得到的对称性为整体对称性;如果在时空的每一点独立地进行对称变换,则所得到的对称性称为定域对称性。
连续的整体对称导致守恒流,满足守恒方程,如电流守恒方程。守恒流是四维时空的矢量,它沿时间轴的分量称为荷密度。荷密度对三维空间的积分是一个守恒量,称为守恒荷,它不随时间变化。场的能量、动量、角动量以及电荷等都是相应的整体对称性的守恒荷。
可以同时测量的守恒量构成物质的状态参量组。由于守恒律,物质运动变化过程中存在选择定则,只有在相同守恒量的状态之间可以进行转化。例如电荷为 □的状态不会转变成为电荷为2□的状态。
一般还存在与状态参量不能同时测量的守恒量和对称变换,它们把两个状态的运动联系起来。在这种对称变换中最重要的一个是时间反演,它把沿时间前进的运动过程与它的逆过程联系起来。它虽是一个近似的对称变换,但对绝大多数过程,已是一个足够好的对称变换,它导致正过程和逆过程之间的细致平衡,并由此导出输运系数之间的对称关系,成为非平衡统计力学的基础。但是,现在还未彻底明了,为什么微观可逆的力学规律一定导致宏观不可逆的统计力学。
最早发现的定域对称性是电磁场的规范对称性。不同时空点上独立进行的对称变换只有通过由规范场表示的平行移动才能互相进行比较和联系。因此,定域对称性要求质量为零的矢量规范场(例如电磁场)的存在,这是它区别于整体对称性最显著的特点。与电磁场对应的对称群是阿贝耳□(1)群,它只有一个生成元,对应一个矢量规范场。杨振宁和R.L.密耳斯最早把定域对称的观念应用于非阿贝耳群,得到杨-密耳斯规范场。非阿贝耳规范场有很多独特的性质。与电磁场不一样,它传递的作用力随着距离的减少越来越弱,形成所谓渐近自由的现象。同时,随着距离的增加,很可能相互作用越来越强,而产生所谓禁闭的现象。现在大多数物理学家都猜测物质世界的四种基本相互作用力无一例外地都是由规范场传递的。
场量和连续介质的状态参量一般有多个分量,组成一个矢量空间,叫做场量空间。场量作为时空点的函数,可以看作时空流形到场量空间的映像。这个映像可以按照场量任意连续变化下的拓扑不变性质进行分类,这样得到在最一般的连续变化下的对称性质,相应的守恒量是拓扑荷。已经知道,非阿贝尔规范场的真空具有不平凡的拓扑性质,形成□真空,它可能引起时间反演□和□□不守恒。
在场论和凝聚态物理中,有很多有限大小的孤立子结构,例如磁涡线(见第二类超导体)、磁单极子等等,它们有不平凡的拓扑性质。拓扑数的守恒使得具有最小拓扑数的单个孤立子在运动过程中成为稳定的粒子。拓扑性孤立子的存在和冻结是许多系统由有序态到无序状态相变的原因。
对称性的自发破缺 对称性显示物质世界的统一性,对称性的自发破缺则显示了它的多样性。
有两种对称破缺的方式。一种是上面讨论过的明显的对称破缺,它是由较弱的相互作用不具有这种对称性而引起对较强的相互作用的对称性的破坏。在这种情况下,作为整体,对称性是近似的,它只有在可以忽略较弱相互作用的过程中才近似地成立。
另一种更重要的对称破缺方式称为对称性的自发破缺,这时描写系统动力学的拉格朗日量具有对称群□的对称性,但是能量最低的真空态或基态不只一个,而是一组互相不能穿透的退化的状态,形成群□的表示。由于真空态(基态)影响到在其上运动着的一切事物,一旦真空态已经确定在一个特定的状态上,群□的对称性就受到了破
场量和连续介质的状态参量一般有多个分量,组成一个矢量空间,叫做场量空间。场量作为时空点的函数,可以看作时空流形到场量空间的映像。
所有跟帖:
• 场论和凝聚态物理中,有很多有限大小的孤立子结构,例如磁涡线(见第二类超导体)、磁单极子等等,它们有不平凡的拓扑性质。拓扑数的守恒 -marketreflections- ♂ (1316 bytes) () 12/06/2010 postreply 13:12:28
• 周光召:系统动力学的拉格朗日量具有对称群□的对称性,但是能量最低的真空态或基态不只一个,而是一组互相不能穿透的退化的状态,形成群 -marketreflections- ♂ (2738 bytes) () 12/06/2010 postreply 13:17:14